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Abstract: The investigation of the Spivak normal fibration of a Poincaré complex
gives an obstruction to a finite CW complex being homotopy equivalent to a manifold.
In this thesis, we present the construction of the Spivak normal structure and demon-
strate the non-vanishing of this obstruction for a well-known five-dimensional Poincaré
complex X°. In the literature this space is given by two different explicit constructions
and . We show that they are homotopy equivalent. We also consider finite
simply connected CW complexes and we describe the result (Theorem that such
an X is a Poincaré complex if and only if the complement of X in its regular neigh-
bourhood is up to homotopy a spherical fibration. In the positive case this yields the

Spivak normal fibration of X.

Key words: vector bundle, spherical fibration, Spivak normal fibration, Spivak nor-

mal structure, exotic Poincaré complex

Abstrakt: Skimanie Spivakovej normaélnej fibracie Poincarého priestoru dava obs-
trukciu tomu, aby bol koneény CW priestor homotopicky ekvivalentny nejakej vari-
ete. V tejto praci uvedieme konstrukciu Spivakovej normaélnej struktiry a ukézeme
nezaniknutie tejto obstrukcie pre jeden zndmy pétrozmerny Poincarého priestor X°.
V literatire je tento priestor ¢asto dany dvoma roznymi konstrukciami a .
Ukézeme, 7e st homotopicky ekvivalentné. Dalej uvazujeme koneéné jednoducho siivislé
CW priestory a uvedieme vysledok (Veta , ze taky priestor X je Poincarého
priestor vtedy a len vtedy, ak doplnok X jeho regularneho okolia je az na homotépiu
sféricka fibracia. Ak je tato podmienka splnend, takato konstrukcia nam dava Spivakovu

normalovu fibraciu priestoru X.

Klhicové slova: vektorovy bandl, sféricka fibracia, Spivakova normalova fibracia,

Spivakova normalova struktiura, exoticky Poincarého priestor
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Introduction

Surgery Theory is a branch of Algebraic Topology that develops methods to classify
manifolds of dimensions > 5. It began with the publication of the paper Groups of Ho-
motopy Spheres in the year 1963 by Michel A. Kervaire and John W. Milnor concerning
the classification of exotic spheres [12, Preface].

An important question in surgery theory is deciding whether a topological space is
homotopy equivalent to a compact manifold. Manifolds in question may be topological
manifolds, smooth manifolds or other types, but in this thesis, we only consider smooth
manifolds. Since every smooth compact manifold has the homotopy type of a finite
CW complex [f| we may restrict our attention to finite CW complexes only.

In the of this thesis, we summarise some topological concepts which
are needed later. In Section [1.6| we recall the Poincaré duality and define Poincaré
complexes as finite CW complexes which have Poincaré duality. From now on we
only consider simply connected finite CW complexes. Otherwise, the theory gets more

complicated with the introduction of local coefficients.

In thesecond Chapter| we define the spherical fibrations, that means fibrations with
the fiber homotopy equivalent to a sphere (Section . In Section we state the

homological and cohomological version of the Thom isomorphism Theorem for spherical

fibrations. We prove the Theorem in detail for the trivial fibrations which is the case

usually left as an exercise in the proofs in the literature.

The [third Chapter|is on the Spivak normal structure, due to M. Spivak [14], part of

which is the Spivak normal fibration. It is a spherical fibration over a Poincaré complex.
It serves as an analogue of the normal vector bundle of a manifold. Specifically, it gives
another obstruction to the Poincaré complex being homotopy equivalent to a manifold.
Namely, there is no such homotopy equivalence when the Spivak normal fibration does
not have a vector bundle reduction. Roughly speaking, a vector bundle reduction of a
Spivak normal fibration is an indication that this fibration could have originated from

a normal bundle of some manifold. This is explained in Section in Chapter 5.

*This is a consequence of Morse theory. See e.g. [, Section 1.3]



A candidate for the Spivak normal fibration of a finite CW complex X is obtained
by taking the complement of its regular neighbourhood after embedding X into a large
Euclidean space. It is up to homotopy a spherical fibration if and only if X is a
Poincare complex. We show it for simply connected finite CW complexes (Theorem
3.3.1). This is done with the Thom isomorphism Theorem ([2.3.5) and its converse
(2.3.6]), which show that a fibration is spherical if and only if the Thom homomorphism
is an isomorphism. In that case, we get an equation U, —~ h(c) = [X], which connects
the Thom class U, of the Spivak normal fibration and the fundamental class [X] of X

(the element h(c) is given as part of the Spivak normal structure).

In the [fourth Chapter| we describe the classification results for both vector bundles

and spherical fibration, the latter being due to J. D. Stacheff [15]. There are classifying
spaces BO(k), BO of k-dimensional vector spaces and stable vector bundles as well
as BG(k), BG the classifying spaces of (k — 1)-dimensional spherical fibrations and
stable spherical fibrations. Knowing the homotopy groups of these spaces facilitates
the example of the nonexistence of the vector bundle reduction of the Spivak normal
fibration for a particular space in the next chapter.

In the we see this well-known 5-dimensional Poincaré space X® which
is not homotopy equivalent to a manifold. In the literature it is defined as either two
copies of S? x D? glued together along the boundary S? x 9D3 by a particular homotopy
equivalence (see|5.27) or it is defined as D° Uy S? v .S? for a certain map f € my(S? VvV .S?)
(see . In the rest of the chapter, we prove, in detail, that these two definitions

yield homotopy equivalent spaces.



Chapter 1
Some Topological Prerequisites

The convention in this thesis is that all homologies, all cohomologies, all tensor products
are with integral coefficients (Z). In all proofs where it is relevant, we use cellular
(co)homology. All our manifolds are smooth, compact manifolds, all maps between
manifolds are smooth. All maps between topological spaces are continuous. All vector
bundles are real vector bundles unless stated otherwise.

We rely heavily on the unfinished book Surgery Theory: Foundations by Diarmuid
Crowley, Wolfgang Liick and Tibor Macko [I]. This makes citing from it a little difficult.
We rely solely on the version from 6. December 2020, which can be accessed from the

link in the Bibliography.

1.1 CW complexes

Let us take a topological space X. Now we define the process of attaching an n-cell. Let

us have a map ¢ : St — X. We define X U, D" as the following pushout diagram.

gt ¥ . x

j l (1.1)

pr — Xu, D"
Using the typical inclusion S"~* < D". Intuitively X U, D" is the space X with
an n-disk glued by its boundary to X in a way defined by the map .
We call ¢ the attaching map and ¢ the characteristic map.

Definition 1.1.1. [5, p. 5] A finite n-dimensional CW complex is a topological space
X together with a filtration ) = X _; C Xg C X; C -+ C X,,_1 € X,, = X. Such that



X, n >k >0, aso-called k-skeleton is formed from X;_; by attaching a finite number
of n-cells. For k > n we define a k-skeleton as X, = X,,.

There are also non-finite CW complexes, which we will not need in this thesis.

Definition 1.1.2. [5, p. 7] A subcomplex A of a CW complex X is a CW complex

which is a union of some cells of X. In this case we may call (X, A) a CW pair.

Definition 1.1.3. Lat us have amap of f : X — Y of CW complexes. Then f is called
cellular if f preserves the structure of skeletons, if we have f(X}) C Y} for all k.

Definition 1.1.4. [5, Theorem A.5] Let X and Y be two finite CW complexes of
dimensions n and m respectively. Denote the characteristic maps of the cells in X by
®! and for cells in Y by \IJJB Then their product topology has a natural structure of a
nm-dimensional finite CW complex with 0 < k < nm cells having characteristic maps
Ol x Wl D' x DI — X x Y for all i, j such that i + j = k.

Definition 1.1.5. [5, p. 346] and [I2, Definition 3.7, p. 31] Amap f: X — Y is

n-connected if one of the equivalent conditions is satisfied.
1. For all z € X the induced morphism 7;(X, x) TN m (Y, f(x)) is an

e Isomorphism for 0 < i < n (where the isomorphism of the zeroth homotopy
is a bijection).
e Epimorphism for ¢ = n (where the epimorphism of the zeroth homotopy is

a surjection).

2. For all 0 <17 < n and for all commutative squares

gt %, X

l lf (1.2)

DI —2 Y

There is a map w : D' — X such that w [ S~! = w and f o w is homotopic to v

relative S*1.

A space X is n-connected m;(X, x) is trivial for all i <n, z € X.
A pair of spaces (X, A) is n-connected if the inclusion map i : A — X is n-connected.

In this case, this is equivalent to a third condition describing relative homotopy groups

3. mi(X,A,z) =0 forn > > 0 and any path component of X contains a point from

A (the second part replaces the concept of the zeroth relative homotopy groups).

4



Proposition 1.1.6. (Ezcision Theorem for homotopy groups)[d, Prop. 4.28, p. 364]
Let (X, A) be an r-connected pair and A be s-connected for some r,s > 0. Then the
map m;(X, A) — m;(X/A) induced by the quotient map is an isomorphism fori <r+s

and 1s surjective for i =1+ s+ 1.

1.2 Basic Constructions

Definition 1.2.1. Let X, Y be spaces. Denote by [X,Y] the homotopy classes of

unpointed maps from X to Y.

Note that the homotopy in the previous definition is a free homotopy. For example

in homotopy groups, homotopy classes relative basepoints of S™ are used.

Definition 1.2.2. Let X, Y be spaces. Denote by (X,Y) the homotopy classes of

pointed maps from X to Y. Here homotopy is taken to be relative the basepoint.

Definition 1.2.3. (The Wedge Sum) Let X and Y be two pointed topological spaces
with basepoints zg € X and yg € Y. The wedge sum of X and Y is a pointed topological
space where X and Y are glued by their basepoints X VY = X U, ~,, Y. The basepoint
of the wedge sum is the point xg ~ .

For two maps f : X; — Y, g : Xo — Y of pointed topological spaces define the

wedge of maps as

FVGXiVXy Y
r— flz) zeX (1.3)
r—g(r) ze Xy

This map is continuous and well defined in the basepoint of X; V Xo.

Definition 1.2.4. (Unreduced Suspension) Let X be an unpointed topological space.
Define its (unreduced) suspension SX as X x [0,1]/X x {0} ][] X x {1}.

Definition 1.2.5. (Reduced Suspension) Let X be an pointed topological space. Define
the reduced suspension XX as X x [0,1]/(X x {0} U X x {1} U{xe} x [0,1]). We can
canonically chose a basepoint of X as the point

(X x {0} UX x {1} U{zo} x [0,1]) / (X x {0} U X x {1} U{xe} x [0,1]).



Let f: X — Y by a map of spaces. For both suspensions, we also have suspensions

of maps

Sf:SX — SY (1.4)

XXX —-XY (1.5)
This distinction between these suspensions does not always matter since we have

Lemma 1.2.6. For a pointed CW complezx, X the unreduced suspension SX is homo-

topy equivalent to the reduced suspensions XX .

The proof follows from the fact that (SX, {zo} x [0,1]) is a CW pair, {z¢} x [0, 1]
is contractible and hence SX = SX/({zo} x [0,1]) = £X by [I8, Theorem 5.13, p.26].

For example, (reduced or unreduced) suspension of an n-sphere is homotopy equiv-
alent to an (n + 1)-sphere.

A suspension gives the following homomorphism of homotopy groups.

Definition 1.2.7. For a pointed space X and an integer k > 0 define the suspension
map o : m(X) — 741 (XX) by sending a pointed map f : S*¥ — X to the pointed map
Yf NSk~ S s VX,

Definition 1.2.8. [5, p. 10] Let X and Y be pointed spaces. Then there is a pointed

analogue of the Cartesian product of spaces, namely the smash product. Define

XAY =XxY/XVY (1.6)

where the inclusion X VY — X xY is defined by X — X x{yo} and Y > {0} x Y.
The basepoint of the smash product is X VY/X VY.

1.3 Nice Neighbourhoods

Definition 1.3.1. Let r : X — A be a a map of spaces. It is a retraction if there exists
amap ?: A — X such that r o7 = id4. We can also say that r is a retraction of i. In
this case the map i is called a section of r.

If A is a subspace of X, then A is called a retract of X if there is a retraction
r: X — A of the inclusion 7 : A — X.

A stronger condition is for A to be a strong deformation retract. It is when for an

inclusion ¢ : A — X there is a map r : X x I — X which is a homotopy relative

6



i(A) of rg = idx and r; : X — A a retraction of i. The map r is then called a strong
deformation retraction.

Note that this terminology varies throughout the literature.

Definition 1.3.2. [3, Definition 1.2, p. 141] A map i : A — X of topological spaces is
a (Hurewicz) cofibration if it satisfies the following homotopy extension property: For

any space Y, any map go : X X {0} — Y and a homotopy g : Ax I — Y in the diagram

A x {0} > Ax T
g
Fxid Yy Fxid (1.7)
e
X x {0} » X x 1

there exists a map g : X x I — Y which fits into the diagram.

Example 1.3.3. For a CW pair (X, A), the inclusion i : A — X is a cofibration|[3]
Corollary 1.4, p. 431].

Any finite CW complex is embeddable in a sufficiently large Euclidean space. This
is shown for example in the proof of the Corollary A.10 in [5, p. 527]. Any 0O-skeleton of
a finite CW complex is embeddable in R. Let us assume that we have an embedding of
A — R™. Assume we attach to A a k-cell by the map . Then AU, D* is embeddable
in R¥ x R™ x R! as union of (D* x {0} x {0}), ({0} x A x {1}) and line segments joining
(2,0,0) with (0,¢(x),1) for all z € dD™. This only takes finite number of steps.

This construction is rather wasteful when it comes to dimensions. Actually an n-
dimensional CW complex can always be embedded in a (2n + 1)-dimensional Euclidean
space [13, Chapter 3.

Definition 1.3.4. [I, p. 158] Let X be a finite n-dimensional CW complex, embedded
in a Euclidean space iy : X — R"™*. Then a regular neighbourhood of X in R"** is a
compact manifold N with boundary 0N such that N is a neighbourhood of ix(X) and

there is a strong deformation retract r : N x I — N of the inclusion ix.
There is the following uniqueness result:

Theorem 1.3.5. [13, Theorem 3.24, p. 38] For a finite n-dimensional CW complex
X embedded in a Euclidean space ix : X — R"* and its two regular neighbourhoods
(N1,0Ny), (No, ONs) there is an isotopy with compact support V- x I — V' such that H
is stationary on X, Hy = idy and Hy(Ny) = Ns.

7



Whitney embedding theorems (e.g. [3, Theorem 10.7, p. 91]) gives us an embedding

of any compact manifold to a sufficiently large Euclidean space.

Definition 1.3.6. [7, Section 5, p. 109] Let i : M — R""* be an embedding of an
n-dimensional manifold M without a boundary into a Euclidean space R"**. A tubular
neighbourhood of this embedding is a pair (f,v) such that v : E — M is a vector bundle
with M identified with its zero section and an embedding f : £ — R"** such that

o 1 M=idy.
e f(E) is an open neighbourhood of M in R™"**.

The existence of such neighbourhood is proved, for example in [7, Theorem 5.1, p.
109]

The tubular neighbourhood of an embedding is unique up to isotopy [7, Theorem
5.3, p. 109].

The definition of a tubular neighbourhood (and hence of a normal bundle of a
manifold) depends on the chosen embedding into a Euclidean space. There is a way in
which this choice does not matter, this will be explained in the Note [2.2.2]

There is a sense in which the regular neighbourhood is a generalisation of the tubular
neighbourhood. Let (f,v) be a tubular neighbourhood (f,v) of a manifold M, then
the associated disk and sphere bundles (Dv, Sv) (see Definition of v form the
regular neighbourhood of M with the strong deformation retract being shortening of

the vectors in Dv.

1.4 Colimits and Homotopy Colimits

Colimit is a construction in category theory. Homotopy colimit represents a variant
of this notion in a so-called homotopy category. To rigorously define these concepts
is beyond the scope of this thesis. We will require to take so-called sequential col-
imits/homotopy colimits in the category of groups and topological spaces. These are

colimits of a sequence like this:

Xo&oox, B ox, B (1.8)

The sequential colimit or a homotopy colimit in a particular category is an object

in the same category. Denote this colimit and homotopy colimit by

X = COlimk_wo(Xk) (19)

8



and

X = hocolimy_,oo (X%) (1.10)

respectively.

We can describe the sequential colimit in the category of topological spaces. The
colimit is the set X = |J X3/ ~ such that two points are identified by ~ if they are
eventually identified in some X; by successive application of the functions f;. This set
is endowed with the final topology, i.e. the largest topology such that the obvious maps
X; — X are continuous.

This construction is not homotopy invariant. More precisely, when we take colimit
of sequence [1.8 we may not be able to exchange objects for homotopy equivalent ones,
nor maps for homotopic ones. This is the reason for homotopy colimits, where those
operations are allowed, in other words, exchanging object and maps up to homotopy
yields the same result up to homotopy.

Some useful properties of colimits (of groups and spaces) and homotopy colimits (of

spaces):

Lemma 1.4.1. (Properties of Colimits and Homotopy Colimits)[17, 6.53.2, p. 152 and
6.23, p.152 and Theorem 6.27, p. 15}]

i) For sequential (homotopy) colimits[1.§ there are natural maps
X; = colimy_, oo (X%) and X; — hocolimy_,(Xy) for each i > 0.

it) Let {Xy}to<k and {Yi}o<k be two sequences as in[1.8, X and Y their colimits (or
homotopy colimits) assume we have maps between the terms Xy 2y Y. Then

there is a natural map X 'Y such that the following diagram commutes for any

k

| | (L.11)

X 5y

iii) In the case of sequential colimits of groups, sequential colimits of topological
spaces, sequential homotopy colimits of topological spaces if the maps g, from
are isomorphisms, homeomorphisms, homotopy equivalence respectively so is

the map g.



iv) Sequential colimits and homotopy colimits have the property that that any finite
number of terms from the beginning can be discarded and the resulting colimit or

homotopy colimit will be isomorphic or homotopy equivalent respectively.

v) [, 5.26, p. 145] Let us have a sequence of topological spaces. Then there is

an isomorphism

colimy o0 mr(Xk) = 7 (hocolimy_, oo Xy) (1.12)

There is a useful result, which indicates when it is safe to work with ordinary colimits

and still change the terms and maps up to homotopy.

Lemma 1.4.2. [1, p. 145] Let { X} }o<k be the sequence of topological spaces as in 1.8,
where each fr : Xy — Xpi1 1S a cofibration. Then

i) [17, pp. 154-155] There is a homotopy equivalence

colimy_, o0 X — hocolimy_, X5 (1.13)

it) For homotopy groups we have colimy_,. m;( X}) = mi(colimg oo Xk).

1.5 Some Homotopy Groups of Spheres

The reference for this section is [5, Chapter 4, 384ff].
Recall that we had the suspension homomorphism [1.2.7) of homotopy groups. Suc-

cessive application of this homomorphism for k£ > 0 yields a sequence

m(S%) —7— M1 (SY) —T— mea(S?) —T— mys(S3) —2— .- (1.14)
The colimit of such sequence is called the stable stem and denoted by 7j. The
sequence always stabilises by the Freudenthal suspension theorem. In particular for
n > k + 2 the group m,(S™) is already stable, though this may happen sooner (i.e.
for smaller n).
We will be interested in the groups of the sequence with k =1 and k = 2.
Let us start with & = 1. The groups m1(S%), m(S') are trivial, while the group
73(S?) is isomorphic to Z, its generator is n : S* — S? the Hopf fibration. The group
stabilisation 73(S?) = 74(S®) is injective, the group 74(S?) is Z/2 and is already stable.
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For k = 2, the groups my(S°), 73(S?) are trivial, while the group 74(5?) is isomorphic
to Z/2 and is already stable.
This can be deduced if we know the Hopf fibration S* — 5% 2 S2. The long exact

sequence of this fibration gives

7T4(Sl) E— 7T4(SS) L) 7T4(52> E— 7T3<Sl> (115)

The triviality of m;(S') for £ > 1 can be shown from the universal covering space
of a circle R — S'. The higher homotopy groups of a space and its covering space
coincide [5, prop 4.1, p. 342]. The space R is contractible.

From we get an isomorphism 7, : Z/2 = m4(S%) 23 7,(S?). As we have seen,
the suspension on is the generator of 74(S5%). So the element 7,(on) is the generator
of m4(5?). But maps induced in homotopy groups are postcomposition, so we have

n.(on) = n o on the generator of m4(S?).

1.6 Poincaré Duality

Here we will summarise results about Poincaré duality for simply connected manifolds.
The Poincaré duality in this chapter only holds for oriented manifolds. We will define
the notion of orientability and then show that simply connected manifolds are ori-
entable, hence for simply connected CW complexes, this Poincaré duality is sufficient.
This section follows the book of Allan Hatcher [5].
There are various equivalent ways how to define orientability for manifolds. One can
either chose orientation for the tangent space T, M at each point = of the manifold in

a way that is locally consistent. The following is a suitable definition for this purpose.

Definition 1.6.1. [5 p. 233]

Let M be an n-dimensional manifold and a point in it x € M.

Then a local orientation at = is a choice of the generator pu, of the infinite cyclic
group H, (M, M \ {z}).

An orientation of M is a function x — pu, assigning to each point on M a choice of
local orientation such that the choice is consistent in the following sense:

For each point x € M with a local trivialisation x € U = R there exists an open
ball B C U such that for each y € B both 1, and p, are images of the same generator
of H,(M, M \ B) under the obvious maps

H,(M, M\ B) — H,(M, M\ {z})
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H,(M, M\ B) = Hy(M, M\ {y})

A manifold M is called orientable if there is such an orientation function.
A manifold with a boundary (M, 0M) is said to be orientable if its interior M \ OM

is an orientable manifold.

There are a few claims in this definition which we shall unravel. Firstly we need
to show that for a contractible open subset B of M we have that H,(M, M \ B) is an

infinite cyclic group

H,(M,M\ B)~ H,(B,0B) = H,(D",S" ')~ H,_,(S" ') ~7Z

where the first isomorphism is by excision.
From this, we also get that for a point x € M and some neighbourhood B homeo-

morphic to R™ we get

H,(M, M\ {z}) =2 H,(B,B\ {z}) = Z

Lemma 1.6.2. [5, p. 234/ For any manifold M there is a two-sheeted covering space
M 2 M called a double cover or an orientation double cover, where M = {1 = €

M, pi, is a local orientation} and

p:M— M (1.16)

e — T

An n-sheeted covering space is a covering space where the preimage of a point consists
of n discrete points.

The orientation double cover is defined for any manifold without any choices.

Proposition 1.6.3. [J, Prop 3.25, p. 234] Let M be a connected manifold. Then M

is orientable if and only if the double cover is disconnected.

Since the covering space is 2-sheeted, it either has one component or two. In the
latter case, we have M=~ M [TM 2y M such that p is a homeomorphism on each
component.

From the theory of covering spaces, it follows that for any simply connected space

X, its only covering space which is connected is X itself. From this, it follows

Proposition 1.6.4. Simply connected manifolds are orientable.
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Proposition 1.6.5. (Fundamental class)[5, p. 236] Let M be an orientable n-dimensional
manifold. Then there exists a generator, a so-called fundamental class [M] € H, (M)
which gets mapped to the local orientation at x under the map H,(M) — H,(M, M \

{z}) for all z.

Let X be a space and A, B open, possibly empty subspaces. Then there is the cup
product (~—) and the cap (—~) product

H*(X,A) x H(X,B) = H"Y(X, AU B) (1.17)

H*(X, A) x H(X,AUB) = H, (X, B) (1.18)

Note that A and/or B can be empty. If they are both empty, this yields the cup/cap
product in absolute (co)homologies.,

Note that the order of the groups in the cap product varies throughout the literature.

Theorem 1.6.6. (Poincaré duality)[3, Theorem 3.30, p. 241] If M is a closed, com-
pact, oriented n-dimensional manifold with a fundamental class [M], then the following

map is an isomorphism

H*(M) — H,_.(M) (1.19)

ar a—~ [M]

There is also a relative version of Poincaré duality. For an n-dimensional, compact
manifold M with boundary OM the group H,(M,0M) is infinite cyclic and there is a
generator [M, 9M] the fundamental class compatible with the orientation such that the
following are isomorphisms (for the full construction and proof see e.g.[12], pp. 355-358])

— ~ [M,0M] : H*(M,0M) — H,_.(M) (1.20)

— ~ [M,0M] : H*(M) — H,_.(M,dM) (1.21)

It turns out that a space satisfying Poincaré duality is not necessarily homotopy
equivalent to a manifold. An example of such space is the topic of the Chapter [5] This
prompts the following definition

Definition 1.6.7. [I, Definition 4.43, p. 117] Let X be a finite, simply connected CW
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complex, n an integer. We call X a finite, n-dimensional Poincaré complex if there is

an element [X] € H,(X) such that the following map is an isomorphism

— ~ [X]: H"(X) — H.(X) (1.22)

The element [X] from the previous definition is also called the fundamental class of
X.

14



Chapter 2

Spherical Fibrations

2.1 Fibrations

Recall fiber bundles and vector bundles. Both are maps p : £ — X satisfying some
local triviality conditions. The preimage of a point p~*(z) is called a fiber and its
homeomorphism type does not depend on x. Vector bundles have vector spaces as
fibers and are also required to satisfy certain conditions which preserve their linear
structure.

For homotopy theory, it is beneficial to work in a more general context which, for
instance, requires that the preimage p~!(x) of a point be only homotopy equivalent to
the fiber.

Definition 2.1.1. [5, p. 375] Let p : E — X be any map of spaces. We say that the
map p satisfies the homotopy lifting property with respect to some space Y if for any
homotopy ¢ : Y x I — X and a map go : Y — FE such that pgy = ¢(0) we have a lift
g:Y x I — E of gor in other words, the map ¢ satisfies pg = g.

This can be summarised in the following diagram:

Y 9—7’; E
YX{O}\[ /g// lp (2.1)

YxI 24X

Definition 2.1.2. [5 p. 375] A map p: X — F is a so-called Hurewicz fibration if it
has the homotopy lifting property with respect to any space.

As for the nomenclature, in both fiber bundles and fibrations, X is called the base
space, E is called the total space and the preimage p~!(zg) = F of a basepoint zy € X
is called the fiber.
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In this thesis, by fibration, we mean a Hurewicz fibration with the base space, total
space and the fiber having the homotopy type of a finite CW complex.
If we want to stress the fiber I of a fibration p : F — X it is customary to write

FsES X,

For x € X, a point in the base space, we can denote E, to be p~!(z), the preimage
of z.
From the definition of fibrations, it is not yet clear that fibrations have the property

that all fibers are homotopy equivalent, but this is indeed so:

Proposition 2.1.3. [5, Prop. 4.61] For a fibration p : E — X the fibers E, = p~*(x)

for all points x € X are homotopy equivalent.

The notion of a fibration is a generalisation of the notion of a fiber bundle (in the
case of limiting our attention to CW complexes). To show this we use the Proposition
4.48 in [5, p. 379] which states that a fiber bundle has the homotopy lifting property
with respect to any CW pair. According to the discussion on p. 376. in [5] this is
equivalent to being a so-called Serre fibration which is defined as a map with homotopy
lifting property with respect to all disks. In the case of CW complexes, this is equivalent

to being a Hurewicz fibration [16, Theorem 1.]. So we have
Proposition 2.1.4. All fiber bundles over CW complezes are fibrations.

The converse is not true. The basic well-known example of this is a filled triangle
with the projection onto the base, see Figure [2.1l This cannot be a fiber bundle since

not all fibers are homeomorphic.

Figure 2.1: A fibration with fibers of different homeomorphism type
We will need the following important property of fibrations in later chapters.
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Lemma 2.1.5. [2, Theorem 6.29, p. 135/Let F S EX X bea fibration with X path
connected. Let'Y be any space. Then the induced maps
[V, F] = [V, E] £ v, B]
are exact at [Y, E], in other words Im(i,) = Ker(p,).

From this Lemma there follows an important obstruction to lifting amap f : Y — F
toamap h:Y — F, such that i o h = f as in the diagram [2.2]

F > X

/L‘ \ E p
¥
2.2
5 fT (2.2)
Y

Let us form the claim in a form of a Lemma

Lemma 2.1.6. The lift h: Y — F of f:Y — E in the diagram[2.9 exists if and only
if the composition p o f is null-homotopic (po f ~ x).

Proof. Assume such lift exists. Then we have ioh = f or f is in the image of the map
ix : [Y, F] = [Y, E]. This is equivalent by the Lemma to f € Ker(p,) for the map
ps o [Y, E] — [Y, X]. This means that po f ~ .

All the steps were equivalences so the proof is finished. n

Definition 2.1.7. Let X and F' be any spaces. Then there is the following fibration
and also a fiber bundle with fiber F' called the trivial fibration or trivial fiber bundle

XxF—=X (2.3)

(x,2) —

It is a fibration since for any Y, gg, ¢ in the following homotopy lifting property

diagram

Yy —% L XxF
Yx{O}j 7. l” (2.4)

YxI —%2 4 X

we define g by sending (y,t) to (g(y,t),p2 © go(y)), where ps is the projection onto
the second coordinate py : X X F' — F.
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If X is clear from the context we write the trivial fibration with fiber F' as F. This
will be exclusively used for fibrations with fiber S*~! as S*~!. Similarly, the trivial

k-dimensional vector bundle will be denoted by R¥.

Definition 2.1.8. [5 p. 406] Let p : E— X be a fibration and f : Y — X any map of
spaces . A pullback of p along f is a fibration ¢ : f*(E) — Y with f*(E) = {(e,y)| e €
E,yeY,ple) = f(y)} and g(e,y) = y. There is also the map of the total spaces given
by (e,y) — e.

g » (2.5)

For the proof that ¢ is fibration see [5, p. 406]. The fibration ¢ has the same fiber
as p, since ¢~ (yo) = p~ (f(%0))-

Now we define the main object of interest in this thesis.

Definition 2.1.9. Let 0 < k. By a (k — 1)-spherical fibration p : E — X we mean a
fibration with fiber homotopy equivalent to S¥~!.

Now we define maps and homotopies between spherical fibrations

Definition 2.1.10. [I, p. 136] Let py : Ey — X and p; : E; — X3 be two spherical
fibrations.

A fiber map (f, f) : po — p1 consists of maps f : Xo — X, and f : Ey — E) such
that the following diagram commutes

EQL)El

lpo lpl (2.6)

X()AXl

The composition of fiber maps (f, f),(g,g) on suitable spaces is (f, f)(g,9) =
(f9,f9)

A fiber homotopy (h,h) is a pair of maps h : Xg x [ — X; and h: Ey x [ — E;
such that for any t € I is (h¢, hy) a fiber map.

A strong fiber homotopy is a fiber homotopy (h,h) such that h, : Xy — X is
stationary for t € I.

If Xy = X, the fiber map (idx,, f) : po — p1 is a strong fiber homotopy equivalence
if there is a fiber map (idx,, g) : p1 — po such that both compositions are strong fiber

homotopic to identity. Denote this equivalence relation by pg ~gm p1.
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The strong fiber homotopy equivalence turns out to be the most suitable candidate
for what it means that two spherical fibrations are the ”same”
The definition of strong fiber homotopy equivalence is not very practical in proofs,

so this is a sufficient (and also necessary) condition for a fiber map (idx, f) of a fibration

to be a strong fiber homotopy equivalence.

Lemma 2.1.11. [1, Lemma 5.98, p. 177] Let p; : E; — X, i = 0,1 be two fibrations
over the same CW complex X. Let f : Ey — Ey be a map such that py = p1 o f (in
other words (idx, f) is a fiber map). Suppose that for every x € X the map f restricts
to a homotopy equivalence py* (x) — py*(z). Then (idx, f) is a strong fiber homotopy

equivalence.

A result similar to the Lemma [2.1.11 holds for vector bundles. Namely let p; : E; —
X, py: E5 — X be two vector bundles of the same dimension over the same base space.
A continuous map h : B, — Ej taking each fiber p;*(z) by a linear isomorphism to the

fiber p,'(x) for each € X is a vector bundle isomorphism (see, e.g. [6, Lemma 1.1,
p. 8]).

Definition 2.1.12. [I, p. 138] Let p : £ — X be a (k — 1)-spherical fibration over
some finite CW complex X. Let [p] denote the equivalence class of fibrations strong

fiber homotopy equivalent to p. Define

SF(X) ={[p]| p: F — X is a (k — 1)-spherical fibration} (2.7)

Definition 2.1.13. Let X be a finite CW complex. Let the set of isomorphism classes

of real k-dimensional vector bundles over X be denoted by
VBL(X) ={[p]| p: E — X is a k-dimensional real vector bundle} (2.8)

We will need some triviality results for fibrations over the contractible space.

Proposition 2.1.14. [5, Proposition 4.62] Let p : E — X be a spherical fibration, Y
be a space and fo:Y — X, fi : Y — X be two homotopic maps. Then the fibrations
fo(E) =Y and f{(E) =Y are strong fiber homotopy equivalent.

Corollary 2.1.15. Let p: E — X be a (k — 1)-spherical fibration for X a contractible
space. Then p is strong fiber homotopy equivalent to a trivial fibration S*¥' x X — X

*A bit on the notation. What Hatcher calls a fiber map we call a fiber map (idp, f) (of spherical
fibrations) over the same base spaces. What Hatcher calls a fiber homotopy equivalence we call (for a
spherical fibration) a strong fiber homotopy equivalence.
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Proof. Since X is contractible, we have that the constant map * : X — X and the iden-
tity idx are homotopic. From the Proposition (2.1.14)), we have that the pullbacks are
strong fiber homotopy equivalent. Pullback along a constant map is a trivial fibration,

while the pullback along the identity is the original fibration p. O]

Note that the previous Proposition holds for non-spherical fibrations too with sim-
ilarly defined strong fiber homotopy equivalence (see, e.g. [B, p. 406 and Corollary

4.63]). An analogous claim holds for vector bundles and vector bundle isomorphisms.

Note 2.1.16. Let FF — E — X be any fibration. Later in this thesis, we will be
assuming that fibers of our fibrations are simply connected or even spheres S* (for
k > 1). We will also be assuming that either base spaces or total spaces are simply
connected. From these assumptions, one can infer information about homotopy groups
of the remaining spaces in the fibration by the means of the long exact sequence of

homotopy groups (or sets for m)

—— m((F) — m((F) —— m(X) —— m(F) —— mo(E) (2.9)

From simple connectedness of F' we get m1(E) = 71(X). In other words, the simple
connectedness of either F or X implies the same for the other.

If X is simply connected, E connected then F' is connected.

There is a notion of Cartesian product for vector bundles (over possibly different
spaces) and Whitney sum for vector bundles over the same base space.

Namely given two vector bundles p; : E; — X1, ps : Es — X5 define a Cartesian
product as a map p; X pe @ B X Fy — X7 X Xo such (eq,e2) — (p1(e1), p2(e2)). This is
a vector bundle with fiber p;* (1) x py ' (2).

If X = X; = X, there is the diagonal map A : X — X x X, z +— (z,x). Define
the Whitney sum p; @ ps to be the pullback of p; X py along the diagonal map A. The
Whitney sum of two vector bundles over X is then again a vector bundle over X.

For all these proofs see [I1, p. 27].

Example 2.1.17. Our main example of a Whitney sum will be the Whitney sum of
a vector bundle with a trivial vector bundle. This special case is referred to as the
stabilisations of vector bundles. This is the topic of the section [2.2]

Let M be an n-dimensional compact manifold embedded in a Euclidean space
i : M — R" % We have the tubular neighbourhood, part of which is the normal

bundle v(i,y) over M. We may chose to embed M in a larger space i, 511 : M —
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R +1 by a postcomposition with the natural inclusion R*** — R"+k+1 Then, for the
normal bundle of the embedding i, 1 we have v(i, 1) DR = v(iyirr1) for R a trivial

one dimensional vector bundle over M.

Now we will define analogous constructions for spherical fibrations. The same con-
struction would not work because the product, as defined above for vector bundles,
would not yield a spherical fibration. Rather the fiber of p; X ps and p; @ p, would be
Gh=1 y gl=1

The join of two spaces X and Y is the space X #Y = X xY x I/ ~ for an equivalence
relation defined by (z,y1,0) ~ (x,y2,0) and (z1,y,1) ~ (z9,y,1) for all xy, 29,2 € X
and yy,y2,y € Y.

It can be defined equivalently as the following pushout:

X XY —— Cone(X) xY

l l (2.10)

X x Cone(Y) —— X xY

The following will be the reason why this is a suitable construction for combining

two spherical fibrations together.
Lemma 2.1.18. For any k,1 > 0 we have S* x St = Sk+i+1,

Proof. We are looking for the pushout for the following diagram

Sk x St — 5 Dkl x Gl
l (2.11)
Sk % Dl+1

Such a pushout is a space D! x S'Ugr, g1 S¥ x D1 which is just the boundary of
DF2 when the disk is written as D**1 x D!*!. So we have S*xS! = 9DF++2 o= Gh+i+1,

]

Definition 2.1.19. [I, p. 137] Assume k,l > 1 and let p; : £y — X be a (k — 1)-
spherical fibration and ps : E5 — Y be an (I — 1)- spherical fibration .
The exterior fiberwise join is a (k4 1 — 1)- spherical fibration
P1 *e P2 - Ey *e Ey - X xY (212)

Where E) %, By = F1 X FEy x I/ ~ for en equivalence relation (x,;,0) ~ (x,y2,0)
and (z1,y,1) ~ (x9,y,1) for all x1, 29,z € X such that p;(x1) = p1(x2) and y1,y2,y € Y
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such that pa(y1) = pa(y2). These last two conditions justify the additional adjective
fiberunse.

The projection is defined on E; x Ey x I by (e, ea,t) — (p1(x), p2(y)) for any
re X,yeY,teT. The elements which are equivalent under the equivalence relation
~ get mapped to the same element, so the map p; *. py is well defined on F; *. Fs.

For the proof that is a fibration, see the cited source. To show that the fibration
has a spherical fiber take a preimage

(p1%e p2) ' (2,y) = {[(e1, €2, 1)]| pr(er) = @, pa(ex) =y, t € I}] ~
= pr () *pyt(y) = SFHx ST ~ SR (2.13)

If X =Y we have the fiberwise join a (k + [ — 1)- spherical fibration p; * py =
A*(py*epe), where A 1 X — X x X is the diagonal map = — (x, z). Since A is injective,
the total space of the fiberwise join of two fibrations p; : E; — X, ps : Fy — X is the
preimage (p; * p2) ' ({(z,x) € X x X}). Hence the fiberwise join is the fibration

p1xpo: {(er,ea,t) pr(er) = pa(er),t €1}/ ~— X (2.14)

(617 €2, t) = pl(el)

Both of the fiberwise joins are associative up to strong fiber homotopy equivalence.
The fiberwise join is natural with respect to pullbacks f*(p1 * p2) = f*(p1) * f*(p2), for
some map f:Y — X.

Now we will see how every k-dimensional vector bundle over a finite CW complex
X can be thought of as a (k — 1)-spherical fibration. For a vector bundle p : ' — X
an inner product is a map (—, —) : £ @& E — R, which is a positive definite symmetric
bilinear form on every fiber of p. Every vector bundle over a paracompact space has an

inner product [6, Proposition 1.2, p. 11].

Definition 2.1.20. (Associated bundles/fibrations) From a k-dimensional vector bun-
dle with an inner product over a finite CW complex p : F — X, we can form the
following bundles.

Define DE = {e € E|(e,e) < 1} and SE = {e € E|(e,e) = 1}.

Then the restriction Dp = p | DE : DE — X is a D*-bundle. and Sp = p | SE :
SE — X is a S*"Lbundle and so a (k — 1)-spherical fibration.

The latter construction defines a map S : VB (X) — SF(X).
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We have the following compatibility condition for the map S when taking a Whitney
sum with a trivial vector bundle and taking a fiberwise join with a trivial spherical

fibration.

Lemma 2.1.21. For any k-dimensional vector bundle p : EE — X owver a finite CW

complex for any | > 1 we have

S(E @ RY) ~, S(B) + S

Proof. 1t is enough to show it for [ = 1, since then by induction, we have for [ > 1

S(EGRT'OR) ~ S(EBRTY) % S vy S(B) % 572 % S0 v, S(E) x S

where the last property is an application of the Lemma [2.1.18

Take the inner product (—, —) : E @& E — R on the vector bundle p. Then we have
an inner product (—, —)": (E®R) @ (E®R) — R on the vector bundle £ @ R defined
on each fiber by (e +7,¢' +1') = (e, €') + rr'.

Let us write the total spaces in question explicitly.

S(E)*S°={(e,z,s,t)| s==+1€ 5% 2 € X,
e€p t(x) C E {ee)=11t€0,1]}/ ~ (2.15)

And the fibration

S(E) % 8° = X (2.16)

(e, 2, 5,1)] = ple)

The total space

S(E@R)={(e,r)|ec E,r e R, {e,e) +r* =1} (2.17)

of the fibration
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S(E®R) =X

(e,r) = ple)

Define a map

0:S(E)*S°— S(E®R)
[(e,x,s,t)] — (V1 —t)e, \/Es)

=

This is obviously a fiber map because p(e) = p((v/1 —t)e). It is well defined (with
respect to the equivalence relation ~) since if ¢ = 0 we have (e, z, s1,0) ~ (e, z, s1,0)
for si,s5 € S° the map ¢ agrees on those points (e, x,s1,0) = (e, x,81,0) =
((vV/1—=1)e,0). On the other hand if t = 1 we have (e, z,s,1) ~ (e, x,s,1) for
e1,ea € p~i(x), but then ¢(e,z,s,1) = p(es,x,s,1) = (0,5). The image of ¢ is in
S(E ®R) since we have ((v/1—t)e + Vs, (V1 —t)e, \/%s>, =((WVI—-t)e,(WV1—t)e)+
(Vts)=(1 —t) +t = 1.

To show that ¢ is a strong fiber homotopy equivalence, according to the Lemma
we show that ¢ is a homotopy equivalence on each fiber. Take zy € X. The fiber

of the vector bundle is a k-dimensional vector space, so ¢ restricted to a single fiber

gives a map S(R*) x S° — S(R* @ R) which is a map from a k-sphere to a k-sphere
defined by [(e, zo, 5,1)] = ((+/T —t)e, v/ts). We claim that ¢ is a bijective, continuous
map. For if we take an element (¢/,7) € S(R* @ R) it is an image under ¢ of a single

element namely (ﬁ, Lo, 77 t) for t = |r| € (0,1). Hence it is a homotopy equivalence
on fibers. O

Definition 2.1.22. [I p. 136] Let p : E — X be a (k — 1)-spherical fibration. Then
the associated disk fibration is a fibration Dp : DE = Cyl(p) — X, where Cyl(p) is the
mapping cylinder.

Definition 2.1.23. [I p. 136] Given a vector bundle ¢ : £ — X one may define the

Thom space Th(q) to be the pointed space DE/SE, with SE/SE the basepoint.
Similarly, given a spherical fibration p : £ — X the Thom space is the pointed

space Th(p) = DE/E. This is homeomorphic to Cone(p), the mapping cone of p.
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2.2 The Stable Vector Bundle and the Stable Spher-

ical Fibration

Recall that we are assuming that the bases of bundles/fibrations are finite CW com-
plexes. This implies being Hausdorff and compact, which is the condition required in
some of the proofs we cite.

Let us take two integers 0 < k < [. We have a natural map VB;(X) — VB,(X)
defined by stabilisation [p] — [R'=* @ p], taking the Whitney sum with a trivial (I — k)-
dimensional vector bundle R'~*.

Now we define the set of stable isomorphism classes of vector bundles over X as

VB(X) = colimy_,oo VB (X) (2.18)

A stable vector bundle over X is an element of VB(X).

From the definition of a colimit it follows that there are maps VB, (X) — VB(X). So
any vector bundle [p] € VB, (X)) can be thought of as a class [p] € VB(X). Two vector
bundles [p,] € VB, (X) and [pg,] € VB, (X) represent the same class [px,| = [p,] in
VB(X) if and only if there exists M > ky, ko such that [p, & RM "] = [p,, & RM k2],

An analogous definition can be made for spherical fibration and the operation of

fiberwise join.

For 0 < k < I we have maps SFy(X) — SF;(X) defined by stabilisation [p] +—
[S"=F=! % p]. The image of this map is a class of (I — 1)-spherical fibrations because we
had for dimensions that S*~! % S'=F=1 = GU=D+I=k=D+1) — GI=1 (yecall that SF;(X)
was defined to be the equivalence classes of (I — 1)-spherical fibrations).

Now define

SF(X) = colimy_, SFx(X) (2.19)

Just like with vector bundles, from the colimit we have the maps SF(X) — SF(X)
and thus any spherical fibration [p] € SFy(X) can be thought of as representing a class
in SF(X). Two spherical fibrations [pg,] € SFy,(X) and [pg,] € SFy,(X) represent
the same class [pg,] = [px,] in SF(X) if and only if there exists M > ki, ko such that
SME1 s pp ~gm SM™F2 % pr. . Such two fibrations are then called stably fiber homotopy
equivalent.

There is, it turns out, a structure of an abelian group on the sets VB(X), SF(X).

Lemma 2.2.1. [0, Proposition 2.9, p. 39] The set VB(X) with the operation & has

the structure of an abelian group.
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For example, the identity is the class [R¥] represented by any trivial vector bundle

over X.

Note 2.2.2. In the Section[I.3|the tubular neighbourhood was defined for an embedding
i of a manifold into a Euclidean space and this yielded v(i) a normal bundle of M. The
tangent bundle of a manifold does not depend on any choice. But the Whitney sum
of TM & v(i) is a trivial vector bundle. So the stabilisation of a normal bundle is an
inverse to the stabilisation of the tangent bundle. Inverses are unique in groups. That

shows that the stabilisation of v(4) is independent of the choice of i.

Lemma 2.2.3. The set SF(X) with the operation x has the structure of a finite abelian

group.

For the proof that SF(X) is an abelian group see [I, Section 5.2, in particular,
Lemma 5.23] and to see that it is a finite group see [I, Corollary 5.36, p. 147].

The identity element of SF(X) is likewise the class of trivial spherical fibrations [SY]
over X.

In the definition we constructed an associated (k — 1)-spherical fibration to
a k-dimensional vector bundle. Now we can show that the same construction is well
defined on stable fibrations/stable vector bundles.

Proposition 2.2.4. There is a map from stable vector bundles over X and stable

spherical fibrations over X given by constructing the associated spherical fibration of

the definition |2.1.20}

S : VB(X) — SF(X) (2.20)

[p] = [Sp]
Proof. All we need to do is to verify that it is well defined under stabilisation. For this,
we use the Lemma [2.1.21| which gives compatibility of stabilisations and the associated

spherical fibrations. For a stable vector bundle [p] € VB(X) pick another representative
q€ep, g R™ =~ padRY. Now in the group SF(X) we have

Sp*ﬁzsﬂl S(p@M> Xcth S(Q@M) Xsfh SQ*K

Thus [Sp] = [Sq] in SF(X). O
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2.3 The Thom Isomorphism Theorem

Consider a k-dimensional vector bundle or a (k — 1)-spherical fibration for & > 0. Just
like with Poincaré duality we will define a notion of orientability of the vector bundle/
spherical fibration and discuss how in our simply connected case we will get orientability
trivially. Then there will exist a Thom class U, € H*(Th(p)) where Th(p) is the Thom
space of a vector bundle or of a spherical fibration defined in [2.1.23] For this Thom
class we will then get the Thom isomorphism Theorem [2.3.5]

From now we will work with spherical fibrations for simplicity of notation. To get
the result for vector bundles, one forms the associated spherical bundle as defined in
2.1.20)

Now we will define an orientability for a spherical fibration (following [1, p. 138]).
Let p : E — X be a (k — 1)-spherical fibration and v a path in X between the
points x and y from X v : I — X. A fiber transport along v is a way to define a
map p~(z) — p~'(y). Take an inclusion p~'(z) — E and a map p~*(z) x [ — X,
(z,t) = (t). Now we have a diagram

pi(x) —— E
ZH(Z,O)l P lp (2.21)

pHz)x I —— X

and since p is a fibration, by the homotopy lifting property we have a map t :
p~(z) x [ — E. By commutativity of the diagram it is true that ¢, : p~(z) — p~(y)
which is the desired map. If for v we only consider loops at some x € X we get the

following morphism ¢, : m (X, z) — [p~(z),p " (z)].

Definition 2.3.1. A (k — 1)-spherical fibration is called orientable if the map t, is
trivial for every x € X. In other words, it is orientable if every fiber transport along

every loop in any point yields a map of fibers homotopic to the identity.
Thus we get our simplification:
Corollary 2.3.2. Any spherical fibration over simply connected space is orientable.

Let a spherical fibration p : E — X be orientable and let x € X be any point. We

can choose and fix an identification

oY

H"(DE,, E,) — H*(D*, s*1) (2.22)

where E, = p~'(x) and DE, = (Dp) () for the associated disk fibration.
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Note that the choice of is equivalent to the choice of the generator of H*(DE,, E,)
as the preimage of the canonical generator of H*(D*, S¥~1).

For a different choice y € X we have the the canonical identification H*(DE,, E,)) =
H*(D*, S*=1) defined by precomposing [2.22| with the map induced by fiber transport
map t; along some path from x to y. The choice of this path does not matter since
te (X, 2) — [p~i(x), p~(z)] is trivial.

We will not prove the following Proposition. The reader can find the proof in the

cited reference.

Proposition 2.3.3. [1, Lemma 5.42, p. 149] Let p: E — X be an orientable (k — 1)-

spherical fibration. Take any x € X. Then the following map is an isomorphism

a: HYDE,E) 5 HYDE,, E,) = H*(D*, 5% (2.23)
where the last arrow is the fived identification[2.23.

Definition 2.3.4. Let p : E — X be an oriented (k — 1)-spherical fibration and x a
point in X. Form a Thom class U, € H*(DFE, E) as a preimage of a chosen generator

of H*(D¥, S*) under the map « of the previous Proposition.

o

a: H*(DE,E) 5 H¥(DE,, E,) = H*(D*, 5% 1) (2.24)

Theorem 2.3.5. (Thom isomorphism Theorem)[1, Theorem 5.52] Let p : E — X be
a (k — 1)-spherical fibration over a simply connected finite CW complex X. Then the

following compositions are isomorphisms of groups for any n.

H,.+(DE,E) 2"5 H,(DE) 2% H,(X) (2.25)
H"(X) 22 g (DE) =% H"*(DE, E) (2.26)

Proof. In the cited reference the authors leave the proof for the case of the trivial fibra-
tions to the reader. Assuming the trivial case is true, the proof goes by the induction
on the number of cells in X. We will show the proof for the trivial fibration for both
the homological version and the cohomological version.

Let us start with the homological version [2.25]

Let p be a trivial fibration p : S* ' x X — X. Now we have (DE, E) = (DF x
X, 8% 1 x X). Pick any point z € X.

The Thom class U, for a trivial fibration is the preimage of the generator in the

isomorphism.

28



i* s HY(DF x X, 8% x X) — H¥(D*, %1

Where i : (DF, S¥71) — (DFx{x}, S* "1 x{z}) — (D*x X, S¥ ! x X) is an inclusion.
Since the pair (D*, S¥71) has a nonzero (co)homology only in the dimension k, by

the Kiinneth formula we have an isomorphism

H*(D* x X, 8" ' x X) & H¥(DF, 5% @ H(X)

a x b<(a,b)

For the unit 1x of the cohomology ring H*(X) we know that the mapping a +—
a X 1x is an isomorphism. It is also an inverse to i* (this follows from the definition of
the Kiinneth homomorphism by the cup products. Namely a X 1x can be written as
pi(a) — pi(1x) = pi(a) for the projections p; : D¥ x X — DF and py : D¥ x X — X.
We have i*p} = (p1i)* = id* = id. So also (pii), = id). The group H*(D¥, Sk=1)
is infinite cyclic with the canonical generator e’ and hence the Thom class is U, =
e x 1x € H¥(D¥, S¥1) @ Hy(X).

We need to prove that the map H, (D" x X, S*! x X) B, H,(D* x X) RN
H,(X) is an isomorphism. The second map is induced by the homotopy equivalence
Dp: X — D* x X and hence is an isomorphism.

The group H,,, (D" x X, S¥~1 x X)) can also be decomposed by the Kiinneth formula

Hpon(DF x X, 8" 5 X) & H(DF, 8% @ H,(X) = Hy(X)

aXb<«i(a,b)

To any element z € H,,(DF x X, S*! x X) there exists a unique element
2z, € H,(X) such that z can be written as z = e x zx € H(D*, S* 1) ® H,(X), for e a
generator of Hy(DF, S¥=1). The elements z and z, are in a one-to-one correspondence.
Now we will use a ”distributive” property of the cross product and the cup product

(see for instance [9], p. 126]):

Uy, ~z= (¢ x1x) ~ (e x zx) = (=1)llxl(¢/ ~¢) x (1x —~ 2x) =

+ (' ~e) x zx (2.27)
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The element (¢/ —~ e) belongs to the group Hy(D¥). From properties of the cap
product we have in this case e(¢/ ~ ¢e) = €'(e) = 1E|

It follows that U, —~ z = £z,. The elements z and £z are (for either sign) in a
one-to-one correspondence and so the Thom homomorphism is bijective.

In the cohomological version we have the same Thom class U, = €’ x 1x. The
typical element of H"(D¥ x X) is 1, x 2, for 1, € H°(D¥) the unit in the cohomological
ring of D¥ and 2, € H"(X). Now by another ”distributive property” [9, p. 126] we

have

(1, X zx) — (¢ x 1x) = (=D=I0A, < €¢) x (2, — 1,) = €’ x z, (2.28)

The target group is H"™*(D*x X, S*~! x X) and its typical element (by the Kiinneth
formula) is what we have just obtained ¢’ X z,. Thus the cohomological Thom homo-

morphism is bijective and hence an isomorphism. O

The following Theorem can be viewed as a converse to the Thom isomorphism

Theorem. Its proof is rather complicated and can be found in the cited reference.

Theorem 2.3.6. [1, Theorem 5.60, p. 155.] Let p : E — X be a fibration with
both E, X and the fiber simply connected. Let k > 3. Suppose there exists an element
u € H""*(DE, E) such that the map

U—~—

H,.x(DE,E) — H, (DE) — H,(X)
is an isomorphism for all n. Then the fiber of p is homotopy equivalent to S*1.

By the Note[2.1.16|if the fiber is simply connected and the spaces E, X are connected,
we only need to assume one of the spaces £ or X be simply connected for both of them
to be.

"Here € is the augmentation homomorphism ¢ : Hy(X) — Z defined as Y n;x; — >, n; for 0-
simplices z € Cy. It can be shown that if X is connected € is an isomorphism (see e.g. [3, p. 172]).
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Chapter 3
Spivak Normal Structure

Definition 3.0.1. (Spivak normal (k — 1)-structure)[l, Definition 5.65, p. 161] Let X
be an n-dimensional Poincaré complex. The Spivak normal (k — 1)-structure is a pair
(p,c) where p : E — X is a (k—1)-spherical fibration called Spivak normal fibration and
cisamap c: S"* — Th(p) such that the Hurewicz homomorphism A : 7, x(Th(p)) —
H,+1(Th(p)) sends the class [p] to a generator of H,.(Th(p)) = H,,x(DE, E).

One should look at the Spivak normal fibration of a finite Poincaré complex as an
analogy of the normal vector bundle for a manifold. In this chapter, we will follow [I]
and [12] in showing the existence of Spivak normal structure for simply connected finite
CW complexes. There is a uniqueness result that will be stated and not proven, and

the proof can be found in, e.g. [I, Chapter 5.].

3.1 The Thom-Pontryagin Construction

In this section, we construct a Spivak normal structure for compact manifolds.

Let M be an n-dimensional compact manifold with an embedding i : M — R"** into
some Euclidean space. We have the tubular neighbourhood (f,v) where v : E — M is
a normal vector bundle of M and f: E — R"™* is an embedding of its total space.

Take the associated disk bundle Dv : DE — M and the associated sphere bundle
Sv: SE — M. The map f restricts to embeddings on DE and SE to give a regular
neighbourhood, a manifold with boundary (f(DE), f(SE)) of M. Let us drop the f
and identify (DE, SE) with its image in R"**. The Thom space of Sv is by definition

Th(Sv) = DE/SE (3.1)

Let (R"*%)¢ is the one point compactification of the space R™**. It is homeomorphic
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to Stk

Define the Thom collapse map

c: (R")¢ - DE/SE = Th(Sv) (3.2)

as an identity on the interior of DE and the constant map
(R™*F)e\ int(DE) — SE/SE on the rest.

Lemma 3.1.1. (Spivak normal structure for manifolds)[1l, Example 5.66, p. 162] Let
M be a compact n-dimensional manifold. In the situation above, (Sv,c) for Sv: SE —

X the spherical fibration associated to a normal vector bundle of M and the Thom
collapse map ¢ : S"** — Th(Sv) of[3.4 form a Spivak normal (k — 1)-structure of M.

Proof. The group H, x(Th(Sv)) = H,+(DE,SE) is infinite cyclic because by the
Thom isomorphism Theorem [2.3.5] it is isomorphic to H,,(M). Since X is orientable and
connected, from the Poincaré duality we have H, (M) = H°(M). From the universal
coefficient Theorem we have HY(M) = Hy(X) = Z.

We need to show that the image of the element [¢] € 7,1, (Th(Sv)) under the
Hurewicz homomorphism is the generator of the group H,r(Th(Sv)). Let us recall

the Hurewicz homomorphism

h: 7k (Th(Sv)) = Hp,1x(Th(Sv))
[e] = e([$™)) (3.3)

where [S"**] € H,, £ (S"*) is the fundamental class of Stk
We have identified Th(Sv) with DE/SE in[3.1] In the homology (since n + k > 0)
we even have H,,(DE/SE) = H,1x(DE,SE). The pair (DE, SE) is a manifold with
a boundary and hence has a fundamental class [DFE, SE] which we now fix. Now we
have c,([S"**]) = m[DE, SE] for m the degree of c. The degred] of a mapping is
the sum of its local degrees at some regular value. Recall that ¢ was the collapse map
(R"t%)¢ — DE/SE. We can take any point y € DE\ SE. It is a regular value of ¢ since
the collapse map is an identity in the interior of DFE. The point y has a single preimage
under ¢. Thus m = £1 and the Hurewicz homomorphism maps [c| to a generator.
O

*The degree of mapping between two n-dimensional oriented manifolds f : M — N can
be defined in two equivalent ways. It is either the sum of the local degrees of the mapping
(deg(f) = Zwef,l(y) sign(df,) for any regular value y € N of f) or as the number m in the equation
f«([M]) = m[N] for fundamental classes [M], [N] of M and N respectively.
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3.2 The Construction

Let X be a finite, n-dimensional CW complex. There exists an embedding of X into
some Euclidean space ix : X — R™™. Take a regular neighbourhood (N, 9N) of ix(X)
(see definition [1.3.4). We will construct a particular fibration that will later turn out
to be spherical assuming the space X is a Poincaré complex. We will be a little sloppy
here and identify the spaces which are homotopy equivalent. This is done because it
makes it easier to see what is going on. This construction is from [Il pp. 158-161] and
there one finds all the details.

The following is a way of turning any map into a fibration, by a so-called pathspace

construction.

Lemma 3.2.1. (The pathspace construction)[5, p. 407] Let f : A — B be any map of
spaces. Let Ey be the space of all pairs (a,v) for a point a € A and a path y:1 — B
such that v(0) = f(a). The space E; is topologized as a subspace of A x B! |f| Let
p: Ef — B be the map defined by p(a,v) = v(1).

Then p is a fibration. The map Ey = A given by (a,v) — a is a homotopy
equivalence and the map A = E; given by a — (a,*) for x a constant path at f(a) is
its homotopy inverse.

The fiber of p is referred to as the homotopy fiber of the map f.

A way to restate the previous Lemma is to say that every map f : A — B can be
decomposed into a homotopy equivalence and a fibration f : A = Ey 2 B.
Let iy : ON — N be the inclusion and denote associated fibration by

gn : Ey — N (34)
(y, w) = w(l)

The total space is Exy = {(y,w)| y € ON,w : I — N,w(0) =iy(y)} ~ ON.
From the definition of a regular neighbourhood, the inclusion ix : X — N is a

homotopy equivalence. Define a fibration py : Sy — X, as the pullback of ¢y along

ix.

SN = Z}(EN) E— EN

le qu (3.5)

X — % N

fThe space B! is the space of maps from I to B with the usual compact-open topology.
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Since iy is a homotopy equivalence, so is the map Sy — En. So we have homotopy
the equivalences Sy = Exy = ON. Now py is the fibration we wanted. To get the
candidate for the Spivak normal structure, we also need the map ¢ : S"** — Th(py).

Consider the following diagram.

Sy —— Ey —— ON
lpn l (3.6)
X = N

It does not commute, but there is preferred homotopy between the two ways one
can traverse from Sy to N, see [I, p. 160].

Thus we get a homotopy equivalence of the mapping cones of py and 7.

Cone(py) — Cone(iy) (3.7)
The left space is the Thom space of py. The right space is homotopy equivalent to
N/ON.
Thus we get a homotopy equivalence
vy : Th(py) = N/ON (3.8)

Define the Thom collapse map as the composition

c: (R™F)° 5 N/ON = Th(py) (3.9)

where the first map is the same collapse map defined in 3.2

This construction does not depend on the chosen regular neighbourhood in the
following sense:

Assume we had another embedding 7y : X — R™* with a regular neighbourhood
(N',;ON"). From the uniqueness of regular neighbourhoods it is possible to con-

struct a map R"** — R"** which

e induces a strong fiber homotopy equivalence of the fibrations Sy,

e maps the elements c to each other by the induced map 7, (Th(py)) =N Tk (Th(pn)).

The proof of this claim can be found in [I, p. 160.].
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3.3 The Spivak Normal Structure

Theorem 3.3.1. [1, Theorem 5.87, p. 170] Let X be a finite simply connected Poincaré
complex. Consider any embedding ix : X < R and its regular neighbourhood
(N,ON) for k > 3.

Then X is a Poincaré complex if and only if the fiber of the normal fibration py :
Sy — X constructed in the Section is homotopy equivalent to S*.

The goal of this section is to show the proof of the Theorem [3.3.1, This Theorem
can simply be viewed as the assertion that for a simply connected Poincaré complex
X the fibration py : Sy — X constructed in [3.2 is spherical. But the Theorem [3.3.1

actually shows an equivalence

X is a Poincaré complex <= The fibration py is spherical

Moreover, the Thom isomorphism Theorem and its converse add another

equivalent condition

X is a Poincaré complex

!

The fibration py is spherical

!

For fibration py there is a Thom class for which the Thom isomorphism holds

Proof of the theorem |3.3.1 First we show that the fiber I’ of py : Sy — X is simply
connected. Let us first show that the pair (IV,0N) is 2-connected. Since (N,0N) is
a regular neighbourhood of X it follows that (N, N \ X) ~ (N,0N). Let us take any
element of m;(N, N \ X) for i < 2 represented by a map of pairs ¢ : (D, S™1) —
(N,N \ X). By universal position, since X is n-dimensional and N \ X is at least
(n + 3)-dimensional, ¢ is homotopic to a map ¢ : (D, S™!) — (N '\ X, N \ X).

Let us consider long exact sequences of homotopy groups of a pair (N,0N) and of
a fibration F' — Sy 2% X. Here we use that N ~ X, Sy ~ Ey ~ ON.

- —— m(ON) —— m(N) —— m(F) —2= 7 (ON) =0 (3.10)
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 — m(ON) —— m(N) —— m(N,ON) —— m(ON) =0 (3.11)

We have m1(F') = m(N,0N) = 0 because, in this case, those groups are completely
determined by the rest of the sequence. For consider a long exact sequence, with y, X

unknown.

- —— m(ON) —— my(N) L5 X —25 0 (3.12)

The map y is surjective with Im ¢ = Kery = X. Hence the map y and the group X
are completely determined.
By the considerations in[2.1.16| F' is connected. Thus the fiber F'is simply connected.

From Poincaré duality, we obtain the following isomorphism.

— ~ [N,0N] : H"™**(N,0ON) = H.(N) (3.13)

for some fundamental class [N,0ON] € H,,(N,0N).

Let us take any u € H*(DSy, Sy). We have a map used in the Thom isomorphism
Theorem H"*(X) = H™*(DSy) —% H""**(DSy, Sy). By the Converse of the
Thom isomorphism Theorem [2.3.6| we know that if there is such u that it is an isomor-
phism we have the fiber of py : Sy — X homotopy equivalent to the (k — 1)-sphere.

For this element u let us define a candidate for the fundamental class of X, an
element from H, (X). Take ux € H,(X) to be the image of [V, ON] under the following

map.

H, +x(N,ON) = H, ,+(DSy,Sy) —— H,(DSy) = H,(X) (3.14)

We shall write for the simplicity of notation that ux = u —~ [N, dN].

Then we claim that the following diagram commutes

H"*(X) % H,(X)
l_vu lg (3.15)

—~[N,&N]

H" ™ =*(N,ON) H.(N)
for the left vertical map being the composition
H"™(X) = H"*(DSy) —% H" ™" *(DSy, Sy) = H" ™ *(N,0N) (3.16)

For upon fixing a value for %, take a € H" *(X). Now we have to show that
(o — u) —~ [N,0N] is equal to @ ~ ux = a —~ (u —~ [N,0N]). But this is true by
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a basic compatibility property of cup and cap products (see e.g. [3 Theorem 5.2, p.
336]).

Now assume that X is a Poincaré complex, with a fundamental class [X]. Then we
have a composition (it is like going around the diagram counterclockwise for * = n
and uyx = [X])

(= ~[X])" o (= —~ [N,ON]): H*(N,ON) = H,(N) = H,(X) = H°(X) (3.17)

The last group has a preferred generator 1 (a unit in the cohomology ring). Define
u € H*(N,ON) as the preimage of this unit. We check that if we defined u, as in
the equation we would get [X]| = ux. From the same equation we have uy =
u ~ [N,0N]. From the equation [3.17] we have u —~ [N,ON] = 1 ~ [X] = [X] and
so [X] = u,. Among other things we now know that the diagram with the top
horizontal map (— —~ [X]) : H" *(X) — H.(X) commutes.

But then the map — — u : H" *(X) — H"™*(N,0N) is an isomorphism. From
the Converse of the Thom isomorphism Theorem [2.3.6] we have that the fiber of the
fibration py : Sy — X is homotopy equivalent to a sphere.

On the other hand, assume that the fiber F' of the fibration py : Sy — X is
homotopy equivalent to S*~'. By the Thom isomorphism Theorem , the Thom
homomorphism is an isomorphism for the Thom class u € H*(DSy,Sy). From u
construct ux € H,(X) as above from the map [3.14] But in the diagram all the
maps but the top horizontal are isomorphisms so that one is as well. Thus we have that

X is a Poincaré complex with fundamental class ux. O

Here is the statement of existence and uniqueness of the Spivak normal structure.

The proof of the uniqueness can be found in I, Section 5.].

Theorem 3.3.2. [1, Theorem 5.68, p. 163] Let X be a finite n-dimensional Poincaré

complex.

i) Let k be an integer k > n+1. Then there exists a Spivak normal (k—1)-structure
(p,c) defined in (namely it is the structure (py,c) constructed in the Section

.

ii) Let (pi,ci), pi : B — X be two Spivak normal (k; — 1)-structures, c¢; : S™™F —
Th(p;) for i = 0,1. Then there exists k > ko, k1 such that there is up to strong

fiber homotopy a single strong fiber homotopy equivalence
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(id, f) : po * 85770 — py S0

Such that 7,1 (Th(F)) (0" ([co])) = o+ ([ea)).

We are, of course, working only with simply connected spaces, so we assume as

much in the proof.

Proof of i) for the simply connected version. Let k > n+1. There is a an emebdding of
X to a (n+k+1)-dimensional Euclidean space, see[L.3] Let us take (py, ¢) constructed in
the Section [3.2] Since X is a Poincaré complex, Theorem shows that the fibration
pn is a spherical fibration. From the Poincaré duality for X, and the universal coefficient
theorem the top homology group H,(X) is infinite cyclic. By the Thom isomorphism
Theorem the group H,,r(Th(py)) is also infinite cyclic. We need to show that
the image of the element [¢] € 7,1, (Th(px)) under the Hurewicz homomorphism is the
generator of the group H,,,(Th(py)). But we had a homotopy equivalence Th(py) =
N/ON of[3.8] We identity the groups m,+(Th(py)) = mpik(N/ON) and H,ok(Th(py))
with H,1x(N,0N) (since n+k > 0). The proof then goes like in the case of a manifold,

see BT
Il
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Chapter 4

The Classification Theorems for

Vector Bundles and Fibrations

4.1 The Clutching Construction for Vector Spaces

Vector bundles over spheres with k-dimensional fiber can be constructed by a clutching
construction. For more details and proofs, see [0, p. 22ff]. The idea is that the
base space S™ can be written as the gluing of the upper and the lower hemisphere
S"™ = D% Ugn1 D™. Now suppose we have a k-dimensional vector bundle over an
n-sphere p : E — S™ then its restrictions (pullbacks) over the n-disks are necessarily

trivial since D™ are contractible.

D x RF = *(E) > E < j*(E) = D" x R¥
| lp | (4.1)
D} ——— D" Ugn1 D" +——— D"
7 J

To obtain the total space E again we need to glue the total spaces of the trivial
bundles over the disks. This is done by a function f : S"~! x R¥ — §7~1 x R* which

has the following properties:

e it preserves fibers: f(z,y) = (x,g(x)(y)) for (z,y) € S" 1 x R¥,

e it preserves the vector space structure of the fibers: g(z) : R* — R* needs be a

linear isomorphism.

The function g can now be succinctly written as g : S"' — GL(k,R) where

GL(k,R) is the group of linear isomorphisms on k-dimensional real vector spaces.
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The following is now a vector bundle isomorphic to the original bundle p.

q: D} xR*U; D" x R* — S"

(z,y) =2

With this construction, one can construct new vector bundles over a sphere. A
choice of g : S"! — GL(k,R) completely defines a k-dimensional vector bundle over
S". Furthermore, up to an isomorphism, this does not depend on the homotopy type

of g. Here is a map

[S™1 GL(k,R)] — VB.(S™) (4.2)

This map is not bijective. It would be bijective if we were to consider complex vector
bundles and complex linear isomorphisms. This has to do with the fact that GL(k, R)
is not path connected while GL(k, C) is.

A very similar result holds for real numbers if one introduces certain orientability
conditions (very similar to those defined in for spherical fibrations). Namely, the

following is a bijection.

[S"L, GL* (k,R)] — VB (S™) (4.3)

Here GL"(k,R) are matrices with positive determinant and VB, (S™) are oriented
vector bundles.

It is more suitable to work over O(k) (or SO(k) for oriented case), the group of real,
k-dimensional orthogonal linear isomorphism (with positive determinant). This makes
certain arguments easier since both O(k) and SO(k) are compact. They can be shown
to be homotopy equivalent to GL(k,R) (or GL* (k, R) respectively)[6], p. 26]. We have

the following maps

(™1 O(k)] — VBL(S™) (4.4)

([S"*, SO(k)] — VB{(S™)) (4.5)

the latter being a bijection.
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4.2 The Clutching Construction for Spherical Bun-
dles

We will define a topological space analogous to GL(k,R) that is suitable for spherical

fibrations.

Definition 4.2.1. [I, p. 139] Let £k > 1. Define a space of homotopy equivalences of
a (k — 1)-sphere G(k) = {f : S¥1 — S* ! deg f = +1}. It is topologized with the
compact-open topology.

Likewise define F'(k—1) C G(k) as such homotopy equivalences which fix a basepoint
of S¥=1. (Note the shift of the index from k to k — 1).

Both of the spaces are pointed spaces with basepoint an identity map on S*~1.

The spaces G(k), F(k—1) are topological monoids, which are spaces with a contin-
uous, associative binary operation o : G(k) x G(k) — G(k). Here the operation is the
composition of maps. Homotopies need not be bijective maps, but there is always a
homotopy inverse, a map such that both compositions are homotopic to identity. The
path components of G (k) are the equivalence classes of homotopy. In other words, two
homotopy equivalences S¥~! — S*~1 are homotopic if and only if they are in the same
path component of G(k).

In vector bundles over an n-sphere, we had the triviality of bundles over the two
hemispheres D, D" of the n-sphere. The same is true for fibrations, any fibration over
a contractible space is trivial (Corollary [2.1.15)).

Let us redraw the diagram from the previous section for a spherical fibration.

D x Skl = *(E) y B < J*(E) = D" x §+1
l lp l (4.6)

Here we glue the two halves by a map

FrSmlx GEL o gl gkl (4.7)
(@, 9) = (2, 9(x)(y))

Such that for each z € S™~! the map g(z) : S¥~! — S*¥~1is a homotopy equivalence.
In other words g is a map S" ! — G(k). Just like with vector bundles, the homotopy
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class of g does not matter and we take the map [S"', G(k)]. But we may just as well
take pointed maps, i.e. elements from 7,_1(G(k),id). This is because we can change
the trivialisation of the lower hemisphere D™ x S*~! to get such a map.

From this we get a total space and a projection

q: DY x Gkt Uy D x A
(x,y) — (4.8)
The proofs of these claims can be found in [I], section 5.2].

And indeed, by the classification Theorem of spherical fibrations due to Stasheft [15]
and also [, Theorem 5.11 and Remark 5.14] we have

Theorem 4.2.2. The elements of SFy(S™), the equivalence classes of (k — 1)-spherical

fibrations over S™, are in a one-to-one correspondence with the elements m,_1(G(k),id).

Later we will need fibrations with a section. The following is a sufficient condition

to have a section.

Lemma 4.2.3. In such case that we have [g] € m,_1(F(k—1)) the fibration q : X — S™
of 4.8 has a section (a map s : S™ — X such that po s = idgn ).

Proof. Define f : S"71 x S¥1 — S~ x S¥~! and the spherical bundle ¢ : D x S*1U;
D" x Sk=1 — §" like above
Let yo € S*~! be the basepoint. Then the map

s: 8" — D" x S* 1y D x Sh!

T = (x7y0>

is well defined and continuous since f(x,y0) = (2, 9(x)(yo)) = (x,%0).

4.3 The Classifying Spaces

The previous sections described a classification or, in the case of vector bundles, an
almost classification result for VB, (S™) and SFy(S™). There are much stronger results

which we will summarise in this section.
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Definition 4.3.1. [I], Section 5.2 and p. 144]
For O(k) the orthogonal group and for the G(k) the monoid of homotopy equiva-

lences of S¥~1 there are the following inclusions for all 0 < k:

O(k) = O(k + 1)

A
A 0
0 1

(4.9)

G(k) = Gk +1)
(SF1 2 gh1) I (mgk1 5 gk (4.10)

the last map is by the suspension of the homotopy equivalence of S*~!. Suspension of
a homotopy equivalence is a homotopy equivalence.

It follows that for a non-negative number [ there are the following inclusions O(k) —
O(k +1) and G(k) — G(k + 1) defined by the successive applications of [4.9] and
Having these maps enables us to take homotopy colimits. According to [I, p. 142, p.
147] the inclusions and are cofibrations and hence we can take colimits.

O = colimy_,, O(k) (4.11)
G = colimy_,o, G(k) (4.12)

Theorem 4.3.2. (Classification of vector bundles)

1. (Universal bundle)[12, Theorem 5.23, p. 95] Take any integer k > 0. Then there
exists a so-called classifying space of k-dimensional vector bundles BO(k) and a
k-dimensional vector bundle called the universal bundle EO(k) — BO(k). Let
X be a finite CW complex. Then there is one-to-one correspondence between the

following sets.
[X, BO(k)] 225 VB,(X)
f— ff(EO(k)) (4.13)

The correspondence is given by pulling back the universal bundle.
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2. [12, p. 96] The trivial k-dimensional vector bundle R* over a finite CW complex
X is classified by the constant map X — BO(k), X — {x}. The universal bundle
EO(k) = BO(k) is classified by the identity id pok)-

3. (Pullback)[12, Theorem 5.23, p. 95] Let X and Y be finite CW complexes,
g:Y = X amap, p: E— X a k-dimensional vector bundle over X classified by
the map f : X — BO(k). Then the pullback of p along g is a vector bundle g*(p)
classified by the map Y — BO(k) given by the composition fog:Y — BO(k).

4. [, p.142] The maps O(k) — O(k + 1) induce maps BO(k) — BO(k + ). They
classify the Whitney sum with a trivial [-dimensional vector bundle. In other
words if a k-dimensional vector bundle p over a finite CW complex has the clas-
sifying map X — BO(k) then the bundle p ® R! is classified by the composition
X — BO(k) — BO(k +1).

5. (Universal bundle for stable vector bundles) We form the colimit
BO = colimy_,oo BO(k). For X a finite CW complez there is a one-to-one corre-
spondence between the sets (we saw that VB(X) is actually a group).

VB(X) 2 (X, BO] (4.14)

The map is defined as follows. Let us take a stable bundle [p| € VB(X). It has a
representative [p] € VBy(X) for some integer k. The vector bundle p is classified
by some map X — BO(k). Define the image of [p] in [X, BO] by post composing
it with the map BO(k) — BO. This implies that the following diagram commutes.

VB(X) —— [X, BO(k)]

l l (4.15)

VB(X) —— [X, BO]
Let us now state an analogous theorem for the spherical fibrations.
Theorem 4.3.3. (Classification of spherical fibrations)

1. (Universal fibration)[15, Classification Theorem] Take any integer k > 0. Then
there exists a classifying space of (k—1)-spherical fibrations BG (k) and a (k—1)-
spherical fibration Eqi-1 — BG(k) called the universal fibration. Let X be a finite

CW complex. Then there is a one-to-one correspondence between the following
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sets

X, BG(k)] 22 SF4(X)
f— f*(Eskfl) (416)

2. The trivial (k — 1)-spherical fibration over a finite CW complex X 1is classified by
the constant map X — BG(k), X — {x}. The universal bundle is classified by
the identity idpg ) -

3. (Pullback) Let X, Y be finite CW complezes, g - Y — X a map, p a (k—1)-
spherical fibration over X classified by the map f : X — BG(k). Then the
pullback of p along g is a (k — 1)-spherical fibration g*(p) classified by the map
Y — BG(k) given by the composition fog:Y — BG(k).

4. [1, p. 145] The maps G(k) — G(k + 1) induce maps BG(k) — BG(k +1). Let
p: E — X be a(k—1)-spherical fibration over a finite CW complex X classified by
some map X — BG(k). Then the fiberwise join of p with a trivial (I—1)-spherical
fibration p x S'=1 is classified by the composition X — BG (k) — BG(k +1).

5. We can form a colimit BG = colimy_,o, BG(k). For any finite CW complex
X there is a one-to-one correspondence between the sets (we saw that SF(X) is

actually a group)
SF(X) — [X, BG] (4.17)

The map is defined analogously with the vector bundle case. Namely a stable
spherical fibration [p| € SF(X) is represented by some (k — 1)-spherical fibra-
tion p € SFp(X). Then we obtain the map from [ X, BG] by postcomposing the
classifying map X — BG(k) of p with the map BG(k) — BG.

Lemma 4.3.4. [1, Lemma 5.15, p. 139 and Remark 5.14, p. 140] The space BG(k)
is path connected and for any basepoint x € BG(k) and any n > 1 we have an iso-
morphism m,(BG(k),z) = Tn_1(G(k),idgn—1). Under this isomorphism an element
from m,(BG(k),x) which classifies some fibration over S™ maps to the element from

Tn(G(k),idgn—1) which is the clutching map for the same spherical fibration.

The proof is done by having the quasi-fibration G(k) — EG(k) — BG(k) with
EG(k) contractible. A quasi-fibration is a generalisation of fibration which we will

not use further [} but the important property is that there is a long exact sequence of

*A quasi-fibration is a map f : E — X such that for any # € X, f~!(x) is homotopy equivalent to
the homotopy fiber defined in
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homotopy groups analogous to that of a fibration. From contractility of EG(k), the

Lemma would follow.
Lemma 4.3.5. [1, p. 147]

1. We have
mi(G) = mi(colimy 00 G(k)) = colimg_,oo ™ (G(K)) (4.18)

mi(BG) = m;(colimg_,oo BG(k)) = colimy_,o m;(BG(k)) (4.19)

[

2. The isomorphism 7,(BG(k)) — m,_1(G(k)) from the Lemma |4.3.4| induce an
isomorphism on the colimits (by the Lemma|1.4.1) 1 (BG) = m(G).
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Chapter 5

The Exotic Poincaré Complexes

5.1 The Vector Bundle Reduction

Definition 5.1.1. |1l Definition 5.69] Let X be a finite Poincaré complex. The Spivak
normal fibration of X has a vector bundle reduction if for one and hence all Spivak
normal structures (p,c) there exists a vector bundle ¢ over X such that p is stably
fiber homotopy equivalent to the underlying spherical fibration Sq in the sense of the
definition 2.1.20

A Poincaré complex without a vector bundle reduction is called an exotic Poincaré

complex.

Note 5.1.2. A finite Poincaré complex X having a vector bundle reduction is equivalent
to the image of the map S : VB(X) — SF(X) (see [2.20)) containing [p].

To show that if one Spivak normal structure has the vector bundle reduction all
of them do, we need the uniqueness result of [3.3.2] For if we have two Spivak normal
fibrations p; and ps, then they are stably fiber homotopy equivalent, in other words
[p1] = [p2] in SF(X). Then if there is a vector bundle g over X such that Sq is stably
fiber homotopy equivalent to py, i.e. [p1] = [S¢]. Then also [ps] = [Sq| in SF(X).

The following discussion is from [I, pp. 163-165]. We will explain some of the steps
in more detail.

We would like to have some equivalent conditions for a finite Poincaré complex to
have a vector bundle reduction of its Spivak normal fibration.

Take EO(k) — BO(k) is the k-dimensional universal vector bundle defined in
the Theorem [4.3.2] This vector bundle has an associated (k — 1)-spherical fibration
S(EO(k)) — BO(k). Define a map Ji : BO(k) — BG(k) as the classifying map of
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this spherical fibration. Taking the homotopy colimit hocolimy_,. J, = J' yields us
a map J' : hocolimg_,o, BO(k) — hocolimg_,., BG(k). Those spaces are homotopy

equivalent to spaces BO and BG respectively so we obtain the map

J : BO - BG (5.1)

Take any finite CW complex X. Note that J; and J induce maps [X, BO(k)] —
[X, BG(k)] and [X, BO] — [X, BG] respectively. Under the bijections of Theorems
14.3.2| and [4.3.3| these maps correspond to maps S : VBg(X) — SF(X) and § :
VB(X) — SF(X) respectively.

It turns out ([12, Proposition 9.20, p. 201] and [I], p. 164]) that the homotopy fiber
of the map BO — BG is a certain space G/O and there is a space B(G/O) and a map
BG — B(G/O) for which BO % BG — B(G/0) is a so-called homotopy fibration

sequencd and on homotopy groups, we have for i > 0

mi41(B(G/0)) = m(G/0) (5.2)

Take a compact n-dimensional manifold M. It has an n-dimensional tangent bun-
dle TM — M. By the classification Theorem it defines a unique element [ty ,] €
[M, BO(n)]. We can stabilise this map by postcomposition with BO(n) — BO obtain-
ing the classifying map of the stable tangent bundle

[tm] € [M, BOJ (5.3)

If we then choose an embedding i : M — R™* we have a normal vector bundle
[v(1)] € VBE(X). As we explained before, stabilisation of the normal bundle corre-
sponds to embedding M into a larger Euclidean spaces by postcomposing ¢ with the
maps R"t* — R+ Denote the stable normal bundle by

As we have seen in [2.2.2] it is independent on the choice of 7 and is an inverse of the
tangent bundle. Under the identifications in the classification Theorems we
can write [ty] = —[var).

Now take a Poincaré complex X and any Spivak normal (k — 1)-fibration p. From
the stabilisation of [p] € SFy(X) we get a stable fibration

*The definition of a homotopy fibration sequence is in the language of model categories, which
exceeds the scope of this thesis. The important fact is that, just as with fibrations, there is a long
exact sequence of homotopy groups. Furthermore, we also have the lemma m
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[vx] € SF(X) (5.5)

independent of the choice of p, by the uniqueness of the Spivak normal fibration
3.3.2l To p there corresponds an element [sx x| € [X, BG(k)]. By a postcomposition
with BG(k) — BG we obtain an element

sx] € [X, BG] (5.6)

This is actually the element which corresponds to [vx] under the map of the
Classification theorem [£.3.3|

A compact manifold M, considered as a Poincaré complex has a Spivak normal
structure constructed in Lemma [3.1.1] where its Spivak normal fibration p was con-
structed as the associated spherical fibration to a normal bundle v(i) of M. In the

terms just defined, we have

and the same for the stabilisations

J. 1 [X, BO] — [X, BG] (5.8)
[vu] = [su]
The obstruction to a Poincaré complex X being homotopy equivalent to a manifold

will be that the map J, has [sx]| in its image. For that we need, that homotopy

equivalences behave well with the elements [vx] and [sx].

Lemma 5.1.3. Let f : X — Y be a homotopy equivalence of finite Poincaré complexes.
Then for the elements [vx], [vy] and [sx], [sy] defined in[5.5 and[5.6 the map f behaves

in the following way

F* 1 SF(Y) — SF(X) (5.9)

[y] = [vx]
where f* is the pullback along f
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and

f* [V, BG] = [X, BG] (5.10)

where f* is a precomposition by f.

Proof. The second claim follows from the first by the classification Theorem of spherical
fibrations [4.3.3]

Let us take the map f*: SF(Y) — SF(X) and (vy, ¢y) a Spivak normal structure of
Y. For the spherical fibration vx = f*(vy) to be a Spivak normal fibration of X we need
an element cx : S"™* — Th(v,) such that (vx,cy) is the Spivak normal structure of
X, namely that the Hurewicz homomorphism maps ¢ to a generator of H,x(Th(vy)).

The pullback vx = f*(vy) induces the map of total spaces Fvx — Evy of the
fibrations vy and vy. Since f is a homotopy equivalence, so is this map. A map of
the total spaces induces the map of Thom spaces of the fibrations. Thus we have a

homotopy equivalence

Th(f) : Th(vx) = Th(vy) (5.11)

o Th(f)~!
Let us define cy as the composition S"** 2% Th(vy) ELIED

map Th(f)~! is the homotopy inverse of Th(f).

The following diagram commutes

Th(vx) where the

Tk (Th(vy)) L H,4%(Th(vx))
lTh(f)* lTh(f)* (5.12)
Tnek(Th(vy)) —"— Hyy(Th(ry))

since for any element ¢ € m,,,(Th(vx)) we have

W(Th(f)«(c) = h((Th(f) o ¢)) = (Th(f) o ) ([S"""]) =
(Th(f). 0 ) ([S"]) = Th(f)s o (cx([S"*])) = Th(f). 0 h(c) (5.13)

Since Th(f) is a homotopy equivalence, the vertical maps are isomorphisms. By defi-
nition the left vertical map sends ¢, to ¢,. Since ¢, is part of the Spivak normal structure

we get that the lower horizontal map sends ¢y to the generator of H,;,(Th(ry)). Hence

20



cx also gets sent to a generator of H,+(Th(vx)). O

Lemma 5.1.4. [1, Lemma 5.78, p. 165.] Let X be a finite Poincaré complex homotopy

equivalent to some closed manifold. Then the following equivalent statements hold.

i) Any Spivak normal fibration of X has a vector bundle reduction of the Definition
5. 1.1

ii) The element [vx] € SF(X) lies in the image of the map S : VB(X) — SF(X).

iii) The element [sx| € [ X, BG] lies in the image of the map J, : [X, BO] — [X, BG]
induced by the map J : BO — BG.

i) The element [sx] € [X, BG] is sent to a class of a constant map under the map

¢ : [X, BG] — [X, B(G/O)].

Proof. First, let us do the equivalence of the statements i) — iv)

The proof that conditions 1), i), i) are equivalent is exactly the discussion above.

The conditions iii) and iv) are equivalent by the obstruction property of fibrations
from Lemma 2.1.6

Now assume that X is homotopy equivalent to some closed manifold M by some
homotopy equivalence f : X — M. We will prove the condition i)

Let us consider the diagram on the left. It commutes

f*

VB(M) —— VB(X) Vi)
ls ls I (5.14)
SF(M) —— SF(X) [Svar] —— [vx]

where the horizontal maps are induced by f and the vertical maps are the maps[2.20]
Let us have the stable normal bundle [vy] of M. Then [Svy,] is the stabilisation of the
Spivak normal fibration of M. Since f is a homotopy equivalence, we have by that
[Svas] gets mapped to [vx] the Spivak normal fibration of X. Now by commutativity
of [5.14] we have that [vx] is in the image of S. O

5.2 The Space X°

First we state without proof the following useful Lemma.
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Lemma 5.2.1. [1, Lemma 5.82, p. 166] Letp : E — X be a (k—1)-spherical fibration
over a finite Poincaré complex X. Then for the stable Spivak normal fibrations [vg]

and [vx| for E and X respectively we have

i) = p*(lvx]) — p"([p]) (5.15)

The last term p*([p]) is just the fibration p pullbacked along its own map p.

This could be viewed as an analogy of a certain property of vector bundles. Let
p: E — X be a vector bundle. Then the tangent bundle Tx E' of E restricted to X is
isomorphic to p&T M (see [7, Theorem 2.1, p. 94]). Moreover, if we have the associated
spherical fibration Sp : SE — X, one can show that there is an isomorphism of vector
bundles over SE

T(SE)® R < (Sp)*TX & (Sp)*(p) (5.16)

We know that normal bundles are stable inverses to tangent bundles. Hence it can
be shown that in VB(SE) we have

= vse] = =(Sp)"([vx]) + (Sp)*(p) (5.17)

The proof of the previous claims can be found in [I p. 165]
The following table is from [12] p. 203]. We will need some of these groups in what

follows.
n 1 2 3 4 516 7 8 9 10
m™(G/O) | 0 Z]2 |0 Y/ 012Z/2|0 ZOZL/2 | (Z)2)?* | Z/2DZ)3
m™(BO) |ZJ/2|7Z/2|0 Z 010 0 7 7]2 72
m™(BG) |ZJ2 | Z/2|7Z/2|Z/24 0|0 7)2 | 7./240 (Z)2)* | (Z]2)3

Table 5.1: Low dimensional homotopy groups of some spaces.

The following construction is from [I, Example 5.85]. We have added a lot of details.
The goal of the following section is to show that in [S3, BG(3)] there is a map that
classifies a 2-spherical fibration over a 3-sphere that does not have a vector bundle

reduction.

Since, by the table 5.1} 735(BO) vanishes, we have, by the long exact sequence of
homotopy groups of the homotopy fibration sequence BO KN Te RN B(G/O) that
m3(q) : m3(BG) — m3(B(G/0)) is injective. Since both of the groups are Z/2, the map
is also bijective and hence an isomorphism. We would like to understand this in terms
of unpointed maps. From the Lemma We have that
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[S3, BO] — [S%, BG] & [S3, B(G/0)]

is exact at [S®, BG]. But from the triviality of m3(BO) we have that [S?, BO] is
also trivial, because any homotopy relative the basepoint of S is also a free homotopy.
Thus ¢, is injective. It is also surjective. For take an element f : S — B(G/O) €
[S3, B(G/O)], basepoints sy € S%, xg = f(sg), any eg € ¢~ '(xy) C BG. From the long
exact sequence of homotopy groups of the fibration ¢ with these basepoints we have
f € m3(B(G/O), ), but this has a preimage g in m3(BG, eg) since ¢, : m3(BG,eq) —
m3(B(G/0), xy) is an isomorphism. The element g is also in the set [S?, BG] and it is
a preimage of f.

Thus [S?, BG] &5 [S%, B(G/O)] is a bijection. Note that those sets are not neces-
sarily two-element sets, as the homotopy groups are. A nontrivial element of [S®, BG|
classifies some stable spherical fibration. The total space of this fibration will be some
exotic Poincaré complex without vector bundle reduction. The challenges with this

approach are the following

e An element from [S3, BG] classifies some stable spherical fibration [p] € SF(X).
We would like to know the smallest representative of [p], i.e. the representative

with fiber of the least dimension. It will turn out that the smallest such fibration
has a 2-dimensional fiber S? — X 2 83,

e To show that the total space does not have a vector bundle reduction we need to
show that the image of the element [sx]| € [X, BG]| classifying the Spivak normal
fibration of X under the map [X, BG] £ [X, B(G/O)] is non-trivial. For the 2-
spherical fibration mentioned previously, we are not aware of how to accomplish

this without proving additionally proving that our fibration p has a section.

A (k — 1)-spherical fibration over S™, in addition to being classified by a map
[S™, BG(k)] is also classified by the map m,_1(G(k)) by the means of the clutching
construction. We know that such a fibration has a section if its clutching map is ac-
tually from 7, 1(F(k — 1)) (Recall that F(k — 1) is the space of pointed homotopy
equivalences of S¥1 and recall the Lemma [4.2.3)).

Now we want to justify a commutative diagram

T (F(2)) —— ma(G)

lg lg (5.18)



for the top horizontal map induced by F(2) — G(3) — G.

Assume we have such a diagram . A nontrivial element in [S®, BG] is by the
Lemma in mo(G). Since three maps in the diagram are isomorphisms, so is the
fourth map my(F') — m(G(3)) — m2(G). The nontrivial element in h € m(G) simul-
taneously comes from 7,(G(3)) and hence classifies a fibration S? — X % $% and also

comes from my(F(2)) and thus the fibration p has a section.

Calculation 5.2.2. (Proof of the diagram [5.1§ part 1.) Recall that for any pointed
space X, the loop space QX is the space (S, X) (the space of pointed maps S* — X,
with basepoint the constant loop). We can have iterated loop spaces Q2*X defined
inductively Q*X = Q(QF1X).

By [0, p. 395] we have for ¢ > 0

i1 (X) = m(QX) (5.19)

We want to observe that Q¥ X is homotopy equivalent to <Sk, X > In general, from
a pointed map X — (Y, Z) one has an obvious map X X Y — Z. But one can
do better. Since this map is constant on X x {yo} V {zo} x Y we actually have a
map X x Y/X VY 2 X AY — Z. From this QX = (ST A S! X). Since we have
Sk A St~ SF* the result follows by induction.

Take the k-th loop space of a k-sphere 2¥S*. By the previous observation it is the
<Sk, S’“>. Maps from a sphere to itself are homotopy equivalent if and only if they
have the same degree [5, Section 2.2, p.134]. For any integer d there is a pointed map
Sk — Sk of degree dﬂ Hence there are Z path components of {S*, S*). By definition
F(k) c Q*S* and actually F(k) consists of two path components of Q¥S*, those with
degrees +1.

Since homotopy groups 7; for ¢« > 1 do not see path components other than the one

with the basepoint we have for i > 1

Ti(F(k)) = m(QFS* idgrc) = m(QFS*, %) =2 m44(S7) (5.20)

The last equality is by the equation[5.19} The middle equality is by a more technical
property. The space 2X actually has an additional structure: a binary operation
(defined by the composition of loops), which makes it a so-called H-space. In such a

space all path components have the same homotopy type.

fThe following is a well known construction. Take a number d. The map f; : S* — S* defined by
e i ' is of degree d. There is a property of degrees that they are preserved under a suspension
(deg(f) = deg(Xf)). All the maps X¥~1f: Sk — S* are of degree d
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Calculation 5.2.3. (Proof of the diagram part 2.) The lower horizontal map in
the diagram is the colimit map of the suspensions m4(5?%) — 75(S%) — ---. By the
Section all these maps and hence the map m4(S?) — 73 are isomorphisms.

Calculation 5.2.4. (Proof of the diagram m part 3.) Colimits of homotopy groups
commute with homotopy colimits of spaces, see [1.4.1]
By the last discussion and we have

colimy_yo0 73 (F(K)) = 7:(F) = colimy_yeo mii(SF) = 78 (5.21)

Recall that we are actually after the second homotopy group of G. But it turns out,
that that m;(G) = m;(F'). This is true because the following is a fibration [10, Lemma
3.1, p. 46]

F(k—1) = G(k) = s* (5.22)

The first map is the inclusion, second map is the evaluation map G(k) — Sk~1
which sends f € G(k) to f(yo) where yq is the basepoint of S¥~1. The fiber is correct
since (ev.)"!(yp) are exactly the maps S¥~1 — S*¥~1 which fix the basepoint. In other
words, maps from F(k —1).

For any integer i and any k > i+ 2 we have m;(F'(k — 1)) = m;(G(k)), since we only
have to look at the the appropriate part of the long exact sequence of homotopy groups
for the fibration and observe that m;(S*~1) = 7,11 (S*7!) = 0 for large enough k.

This gives us an isomorphism m;(G(k)) = Tipe_1(S¥1), for k > i+ 2. From the

Lemma [1.4.1) this suffices to give us an isomorphism ;(G) = 7.

In our case 7 = 2, so the smallest admissible is £ = 5.

We add some groups into the diagram [5.18

mo(F(2)) —— m(F(4)) = m(G(5) —— m(G)

l% lg

T4(S?) ——————— 76(5%) >

(5.23)

1%

N »

We have already proven all the marked isomorphism. The right square commutes
by the colimit property in Lemma [I.4.1] In this square, we get that the top horizontal
map m(G(5)) — m2(S) is an isomorphism.

The left square commutes, so the upper horizontal map is also an isomorphism.

This finishes the proof of the commutativity of the diagram.
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We will now show that the total space X of the fibration p is a Poincaré complex,
but not homotopy equivalent to a manifold, making use of the necessary conditions in
Lemma [5.1.4

It is a Theorem of Gottlieb |4, Theorem 1, p. 148] that the total space of a fibration
with base space and a fiber a Poincaré complex is again a Poincaré complex. Thus X
is a Poincaré complex.

By the Lemma we know that the stable Spivak normal fibration of X is [vx] =
p*([vss]) —p*([p]). The normal vector bundle of any sphere is trivial since a k-sphere can
be embedded is a (k +1)-Euclidean space i : S¥ — R*"! but this 1-dimensional normal
vector bundle has an everywhere non-zero section, namely an outward unit vector. So
also its Spivak normal fibration is a trivial fibration. Now we get [vx] = —p*([p]).

Let f, : S* — BG(3) — BG be the characteristic map of the fibration p composed
with the inclusion. Since the stable Spivak normal fibration of X is the pullback of —|p]
along the map p, from the Classification Theorem of spherical fibrations we get
that the classifying map of —[vy]| is given by f= fpop.

This is our situation

N T
sl f
SSL%G (5.24)

B(G/O)

The previous diagram commutes in the sense that f, op = f~ and fo s = fp. The
latter is because since s is a section we have fo s=fpopos=fyoid = f,. It is not
necessarily true that s o p =id.

To use the Lemma namely the condition iv) we need to show that f € [X, BG]
is sent to the non-trivial homotopy class by the induced mapping ¢. : [X, BG|] —
[X, B(G/O)]. To do this, we will show that m3(qg o f) : m3(X) — m3(B(G/O)) is
nontrivial. Let us apply the functor 73(—) to the diagram

7T3(X) 0

m3(s) <lﬂ'3(p) ) l

g )| 7./2 (5.25)

Q*lg

Z)2

o6



The map induced by f, is nontrivial

m3(f,) : m3(S?) — m3(BQG) (5.26)
7Z—17)]2

1—1

since f, is nontrivial in [S*, BG].

Now the section of p will become useful, since Wg(f) o m3(s) is surjective and so
is m3(qs) o m3(f) o m3(s). From this it follows that ¢ o f is not nullhomotopic and so
X is a Poincaré complex without a vector bundle reduction and hence not homotopy
equivalent to a manifold.

Recall that X was constructed from an element from m(G(3)) by a clutching con-
struction and so can be written as X° = D2 x 52Uy D? x S? (written with the superscript

to indicate the dimension of the Poincaré complex) for the map

f:0D} x 5% = 9D? x S
(z,y) = (z, h(z)(y)) (5.27)

where h is the nontrivial element of mo(F'(2)).

5.3 Some Homotopy Groups

Consider the k-sphere S* as a CW complex composed of one 0-cell and one k-cell.

Let S*V S! be the wedge of a k-sphere and an [-sphere. Its CW structure is such that
the k-cell and the [-cell are attached with the constant attaching map. Let, throughout
this chapter, ¢, and ¢; be the pointed inclusion maps S* < S* v S and S' — S¥ v S
respectively.

Consider the space S* x S!. It can be written as a 0-cell, a k-cell, an [-cell and a
(k+1)-cell[l.1.4] The k-cell is attached by the constant map and so is the l-cell. Hence
there is S* v S' in S* x S! and the (k + [)-cell is attached to it.

Definition 5.3.1. [I8, p. 472] or [5, p. 381] Let k,I > 0. Let X be a space and
take a € m,(X),5 € m,(X). Then the Whitehead product [f,g] € mprqe—1(X) is the
composition S¥+H-1 — kv G EACR X, where the first map is the attaching map of the

(k+1)-cell of S* x S! described above.
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For example the attaching map of the (k + [)-cell in S*¥ x S' as the Whitehead

product [ug, ¢].

Calculation 5.3.2. We will need to know the group my(S? Vv S3). We will follow the
method from [5, Example 4.52, p. 380]. First, let’s consider a portion of the long exact
sequence of homotopy groups for a pair (5% x S3, 5% v 53)

C— (82 S3) = m5(S9% x S¥) — (52 x 53,52V 53) D 1, (S2v S3) —

——— m(S?x 83) — my(S? x S3,92V S3) —— .-

(5.28)

For any collection {X,} of path connected spaces we have for all n > 0 an iso-
morphism 7, (][, Xa) = [[, 7n(Xa) defined by sending a map ¢ : S™ — ], X4 to
an element in the target whose 3’s component is pg. o ¢ where pg is the projection
[15 Xa — X5 [5, Prop. 4.2, p. 343]. Consider the following maps from the long exact
sequence 7;(S? V §3) — m;(S? x S3) = 71,(5?%) @ m;(S?) for i = 4,5. They are induced
by inclusion of spaces. Consider the group m;(S?) @ 7;(S?). It is generated by maps
St — 8% and S* — S3. Any such map has a preimage in m;(S? V S?) by postcomposing
it with an inclusion ¢y or 5 to get a map S° — 5% 2 S%2v S3 or §% — 5% 2 5% v S5,

Surjectivity gives us the following information about the maps

c— (82 S3) = ms(9% x 9%) D (52 x 53,52V 53) & 1y (S2v S3) —»

—— m(S? x %) B my(S? x §%, 82V %) —— -

(5.29)
Hence the long exact sequence yields a short exact sequence
0 — m5(S% x 53,82V 5%) & 1,(S2 v 5%) 55 my(S% x S3) — 0 (5.30)

The map i,, upon identifying its target with m4(S?) ® m4(S?), sends the class of a
map map ¢ : S* — S?V S3 to the pair (py o ¢, p3 0 @) for projections py : S?V 3 — S2
and p3 : S? V.83 — S3,

The sequence [5.30] splits as there is a section s.

5 m4(S% x S?) 2 my(S?) @ ma(S?) — ma(S*V S?) (5.31)
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Defined by s(¢) = (12). 0 ¢ for ¢ € m4(5?), s(¥) = (13)« © ¢ for ¥ € m4(S?) and
extended linearly.

The splitting gives

m4(S%V S?) 22 s(my(S? x S?)) @ O(ms5(S? x S3, 5% v §?)) =

(5.32)
= 74(52) D 7T4(S3) D 7T5(52 X SS, 52 \Y 53)

Let us now study the summands. In the Section[L.5] we saw that m3(5*) 2 Z/2 with
generator on the suspension of the Hopf map n : S — S2?. From the same section, we
have m,(S?) = Z/2 and it is generated by 1 o on. We will abbreviate this as n?.

The following Lemma will describe the last summand 75(S? x S3, 52 v $3). Tt is
proven by a technique in [5, pp. 380-381].

Lemma 5.3.3. The group m5(S% x S3,8% Vv S3) is infinite cyclic and generated by the
characteristic map of the 5-cell attached to S* Vv S* by the Whitehead product [, t3].

Proof. If we could use the homotopy excision Theorem|[L.1.6]to get 5(5%x S3, 52V $%) =
75(S?% x S§3/5% v S3) we would be finished since S? x S?/5% v S3 is homeomorphic to
S® and 75(S°) & Z.
The excision Theorem for homotopy, in this case, requires there exist r and s,
5 < r+ s, such that (5% x S3,5%V S3) is r-connected and S? V S? is s-connected.
Constructing a space with a minimal CW structure (as few cells as possible) is
advantageous in showing the high connectedness of cellular maps or CW pairs. See
[5, Corollary 4.12 and pp. 352-357]. In particular, by [5, Corollary 4.12] the pair
(52 x §3,52 Vv S3) is 4-connected since the wedge S? V S is the 4-skeleton of S? x S3.
The space S?V S? is 1-connected since it is connected and does not have any 1-cells.
Therefore we can use the Excision theorem|[L.1.6/and we have m5(S?x $%, S?vS%) = Z
To find the generator we use the isomorphism 75(5% x S, 52V §3) S 75(S%). The
generator of the right-hand side is the characteristic map of the 5-cell. Its preimage is
represented by the characteristic map of the 5-cell in S% x S3. This cell is attached by
the Whitehead product by the definition of the product. n

5.4 Comparing X° and Y°

In the book The classifying spaces for surgery and cobordism of manifolds [10] Madsen
and Milgram define the space
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Yo =D"U, (S?V S?) (5.33)

with b = ([t2, 3] + 12 07?) : S* — S? v §3, where [19, 3] is the Whitehead product
of inclusions and 7? is the generator of my(S?).

The remainder of this chapter used to prove the following.
Theorem 5.4.1. The space X®° is homotopy equivalent to Y.

Firstly we want to show that X® can be written as D>U(S? V S?) for some attaching
map.

The space X° is characterised in as a gluing of D} x S to D? x S?. We will
now collapse one of the disks fiber-wise. More precisely let ~ be an equivalence relation
on D3 x S? such that (z,y) ~ (2/,y) for z,2’ € D® and y € S?. We factor X® by ~
obtaining a homotopy equivalent space X”® ~ X = X5/ ~.

Recall that in the equation the map f was defined using h € mo(F(2)). We can

use it to characterise the space X’

X/5 — D3 % 82 Uf/ 5«2
f0D? x §* —» §? (5.34)
(z,y) = h(z)(y)

We want to show the following

Lemma 5.4.2. The space X" is homotopy equivalent to some space X" = D>Upn S*V
S3 for some attaching map f" € w4(S? VvV S3).

Proof. Let us first find a suitable embedding of S? Vv S? in X,

Let yo be the basepoint of S2. Since h is from the group 2 (F(2)) we have h(z)(yo) =
Yo Notice that in X5 the subspace D? x {yo} C D? x S? is actually an S3, since the
boundary of D?x {yo} gets collapsed to a point precisely because h(z)(yo) = yo. Let the
S% C D3 x S? Uy S? be inclusion into the sphere on the right of the union. Combining
these two subspaces yields an inclusion S?V S? — X5, because they intersect at exactly
one point .

We need to show that when S? V S is removed from X’°, we are left with a 5-disk.

We will remove the spheres one by one for clarity.

(D3 X S2 Uf/ SZ>\522D3 X S2
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The second one

(D? x S*)\ (D? x {yo}) ~ D* x D* = D°

Thus we have another homotopy equivalent representation of the space X°.

X?~ X" =D U S? Vv S° (5.35)

For some map f” € m(S? v $3). We have already shown that m4(S? v S3) =
74(S?) @ m4(S?) ® m5(S? x S3, 52V §3). The attaching map in Y is an element (1,0, 1)
from this groups. We need to figure out that our attaching map f” is the representative
of the same element to prove the Theorem [5.4.1|

It will be helpful to understand how the group m4(S? V S3) behaves under maps
induced by collapsing individual spheres p, : S?2V S? — S% and p3 : S? v §3 —
S3. In particular, we would like to see what happens to the individual summands

74(5?) ® 74 (S?) ® 75(S? x S3,5? v S3) under these projections.

Pjx

Lemma 5.4.3. For i,j € {2,3} the maps my(S") = m4(S?V S3) 25 714(S9) are

isomorphisms if i = j and zero if i # 7.

Proof. For induced maps we have pj i;, = (pjti)« : ma(S*) — m4(S7). The map pji; :
S — S7 is constant if 7 # j and an identity if 7 = j. The Lemma follows. O

Lemma 5.4.4. Fori € {2,3} the composition m5(S? x 53,52 v §3) 2 7,(52 v §3) 2z

74(S) is zero.

Proof. The map p;, is composition 74(S2 V §3) 25 m4(S2) @ my(S?) prok, 74(S%) where
14 18 the map from the short exact sequence [5.30, From the exactness of the short exact

sequence the result follows. O

Lemma 5.4.5. For the map f" = (m,n, k) € m4(S?) ®m4(S?) B ms(5% x §3, 52 v $3) =
74(S?V S3) we have n = 0 € my(S?).

Proof. Let p3 : S? v .S® — S2 be the collapse map. This map induces a homomorphism
on the homotopy groups ps. : m4(S? V S3) — m,(S%). We already understand this

induced homomorphism, namely
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pae : T4(S?) @ m4(S?) © w5(S?% x S2, 57V S?) — my(S?)
(1,0,0) = 0 by the Lemma [5.4.3
(0,1,0) — 1 by the Lemma [5.4.3
(0,0,1) =0 by the Lemma [5.4.4]

To finish the proof, one need only to show that ps.(f”) = pso f" =0 € my(S?).

Factoring out S? from the space X”® gives the space

D® Uy, sy S® (5.36)

Similarly let us take the space X”® where we factor out S? from the right side of its
characterisation [£.341
We obtain

X"?/8% = (D*x §* Uy 5%) /5* = D* x S* Uy, * (5.37)

for a constant map fy : 9D3 x S? — x.

This brings us to the familiar space S? x S3. We already know that it is a 5-cell
attached to S?V S% by the map [i9, 13] € m4(S?V S?), the Whitehead product. And the
space in is thus exactly S? x S3/S52. Recall that the characteristic map of the cell
attached by the Whitehead map was the generator of 75(S? x §2, 5% v S§3). But this
group is sent to zero under the map ps.. Hence also ps.(f”) = 0.

0

We will need the following

Lemma 5.4.6. The space S* x S' for k,1 > 1 has the following cohomology

. . 7 if i=0, k1, k+l
If k # 1 we have H*'(S" x S') = (5.38)
0 otherwise

Z if i=0, 2k
If k=1 we have H'(S* x S"Y = Za®Z if i=k (5.39)
0 otherwise

and the cup product of the generators of the k and l cohomology gives the generator

of the top cohomology e — €' = et sign depends on the choice of the generators.
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Proof. An application of the Kiinneth Theorem [5, 3.15, p. 216] gives an isomorphism

of rings.

[~23

H*(S*) @ H*(S") = H*(S* x 9"
(a®b)— (axb) (5.40)

Generators of the ring on the right are 1® 1, ef® 1, 1® ¢!, e ® €' and multiplication

is
("@1)- (1) = ®e s £ € HF(SF x )
("@1)-(F@1)=("-fo1=0

(1) 1ed)=1@ (- )=0

The following Theorem is from a 1957 paper by I. M. James [8, Theorem 4.1]

Theorem 5.4.7. Let X be a CW complex, p,q > 2 be integers such that HPT171(X) is
finite. Suppose we have elements a € H?(X) and b € H(X) such that a — b= 0. Take
an element \ € mp1,-1(X). Let us now attach a (p + q)-cell with A. X* = X U, DPT4
and let ¢ € HPT1(X*) be the element corresponding to this new cell.

Then there are unique a’ € H?(X*) and b’ € HY(X*) which map to a and b respec-
tively under map induced by inclusion X — X*. Then there exists an integer m such
that a' — V' = mec.

Define a function h : m,1,—1(X) — Z by sending A to m. This function is a

homomorphism.

Calculation 5.4.8. Assuming Theorem [5.4.7] we apply it to our problem. In the
Theorem let X be S?V .83, p =2, ¢ = 3. The fourth cohomology of S?V S? is obviously
vacuous, hence finite as required. Let a = ¢? € H%(S? v S3) and b= e € H3(S? v S3)
be the elements of the appropriate cellular cohomologies representing the duals of the

3 is zero because the fifth

2-cell and the 3-cell respectively. The cup product e? — e
cohomology of S% v S? is trivial. The Theorem implies that h : 74(S?) @ m,(S?) ®

m5(5% x S, 52V S3) 2 Z/2® 7Z/2 & Z — 7 is a homomorphism.
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Recall that product of spheres S* x S! was a (k + [)-cell attached to S* v S!. From
the Lemma we know the cup product e* — e! = +1-e**. From the Lemma
we know that the generator of the group m5(S? x S3, .52 v §3) is the characteristic map
of this cell e**!. Hence h(0,0,1) = 41. This (up to a sign) completely defines h by
sending (m,n, k) L +k. For the space X”® to be a Poincaré complex and so to have
Poincaré duality we need e — €3 to be a generator. This is because if €2 — e3 = me®
for an integer m, then by the basic properties of the cup/cap products [12], p. 336] we

would have
m = (me’) —~ e = (2 — €*) ~e5=e> ~ (¢ ~e5) = ~ (£e?) = £1 (5.41)

where we use that e3 —~ e5 = +e? from the Poincaré duality and e,, e3 and es are the
elements in the respective homologies corresponding to the cohomology elements e?,
e3 and e’ respectively. This makes sense because the cellular chain and and cochain

complex have all boundary and coboundary maps zero.

202575057 (5.42)

Hence we need k£ = +1.
What we have learned can be explicitly stated: the presence or absence of torsion
elements : 74(S?), 74(S?) in the attaching maps from m4(S? V S%) does not plays any

role in the cup product of the space X",

Proof of the Theorem[5.4.1. We know from previous calculations that f” was of the
form (m,0,+1) € m4(S?) & mu(S?) @ 75(S? x S3,52 v S$3). That leaves us with two
options for f” either (1,0,41) or (0,0,41). But the latter option would make X"
homotopy equivalent to a manifold S? x S? which we know it is not, because X" does
not have a vector bundle reduction of its Spivak normal fibration.

Therefore f” ~ n? =+ [13,13]. If we have a minus sign, precompose f” with a map of

degree —1 and then we have f” ~ n? + [, 3] since (—n? = n?). O

The reader may wonder what kind of space would one obtain for different choices
of the attaching map in DU, S? V S2. To consider only Poincaré complexes we take

[, t3] with unit multiplicity in the summand of g.

Note 5.4.9. Let us take the space Y = D° U, S? V S? for some g = (m,n,£1) €
74(S?) @ 14(S?) @ m5(S? x S3,5%,vS?). Then

i) For g = (0,0,+1) we have that Y ~ S? x §3.
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ii) For g = (1,0, +1) we of course have Y ~ X",
iii) For g = (0,1,41) or g = (1,1, £1) we actually get homotopy equivalent results
since, as indicated here [10, p. 32], there is a homotopy equivalence

(ta,120m + 13) : S2V? — S V3 (5.43)

which sends (0, 1,+1) to (1,1, £1).

Proof of the Theorem[5.4.7. [8, Lemma 4.2] Consider three elements
A1y A2, Az € Tpig—1(X) such that Ay + Ao + A3 = 0. If we proved that h(A\1) + h(A2) +
h(A3) = 0 the Theorem would follow. This is because

h(A1) + h(A2) 4+ h(As)
h(A1) + h(X2) + (=X — A2)
h()\l) + h()\Q)

0
0
h

(A1 4+ A2)

where the relation A(—\) = —h(\) used in the last step holds because both corre-
spond to changing the sign of the chosen generator of the cell attached by .

We will use an indexing integer t = 1, 2, 3. Denote X; which is obtained by attaching
a (p+ q)-cell to X by \. Denote ¢; the cohomology class in H?9(X;) corresponding
to this cell.

Let X' = X;Ux X5Ux X3 be the union of the three spaces, where the original X are
glued together. Let us have the long exact sequence of cohomology for a pair (X', X)

D HY(X,X) —— HY(X!) S (X)) 2 gr(XY X)) s
(5.44)

Where we denote the inclusions X ‘£> X, ‘ﬁ> X'

If we consider r = p, then a € H?(X) and da = 0 since X"\ X only contain (p + q)-
cells and from ¢ > 2 we have HP™' (X', X) = 0 and also H?(X’, X) = 0. Therefore a
has a unique preimage a’ in H?(X’). Taking r = ¢ we can find a unique preimage b of
bin HY(X') using the same argument and an assumption that p > 2.

Now the cup product @’ — b’ is in the cohomology HPT(X"). The elements ¢;, ¢z,
¢3 can be thought of as generators of the cohomology H?™4(X' X ) 2 Z & Z & Z. There

are integers mq, mo, msz such that a’ — b’ = myc; + macy + mscs.
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We now use the naturality of the cup product with respect to the previously defined

maps j; : Xy — X',

ji(a') — ji (V) = ji(a" — V') = ji (mici + macy + mycz) = myjy

But by definition of the map h we have h(\;) = m.

We will need a map f : SPT9 — X’ which is of degree one on each of the attached cells
(i.e. for each t = 1,2,3 the composition SP*4 END ‘G X' /(Uiz1,2,3:i2¢ X:) = SPT9 is of
degree one (for an orientation preserving homeomorphism X'/(U;—1 2,3.20.X;) = SP17)).
The existence of such map is proven in the Lemma bellow.

Assume we have such a map f. For simplicity of notation take t = 1. Since
X'/ X5U X3 does not have any (p+ ¢ —1)-cells we have H,,—1(X'/ XU X3) = 0. From

the naturality of the Universal coefficient Theorem for cohomology [, p. 201] we have

HPra(Srta) = Hom(H,,,(57+9), Z)
f*T (f*)*T (5.45)
HPH (X)X, U X3) —— Hom(H,, (X' /X, U X3),Z)

The group H,i,(X'/X2 U X3) is isomorphic to Z and by the degree one property
(f«)* induces an isomorphism. Hence f* : HPTI(X'/X, U X3) — HPTI(SPT9) is an
isomorphism.

Element ¢; € HPT9(X'/X,UX3) is the generator and hence is mapped to a generator
f*(c1) = ¢ of HPI(SPT?). The elements ¢y, c¢3 are mapped to the same generator
f*(ea) = ¢, f*(c3) = c. We know that f*(a’) = 0 and f*(b’) = 0 because the cohomology
of the sphere is nontrivial only in dimensions 0 and p + q.

We have by naturality

0= /(7 (@) — f (@G 0) = £ (a') — 57 (b))
= f*(myc1 + macy + mges) = (my +ma + m3)c  (5.46)
Since ¢ # 0 we must have my +mg +ms = 0, and so h(A;) +h(X2) +h(A3) =0. O

Lemma 5.4.10. In the situation of the proof of the Theorem there is the map
f 8Pt — X' as required in the text.

Proof. Let us write SP*? as the union of the upper and the lower hemisphere SP*¢ =

D Ugpia—1 DP7. We shall define f for each component separately. Take the upper
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hemisphere with its boundary (D2, S7+9~1). Embed in it two disks (p + ¢ — 1)-disks
with boundary by pointed maps i1, 72 (see Figure

iy (Dp+q—17 Sp+q—2) N (DT-!I7 Sp-i-q—l)
(5.47)

Z'2 : (Derqfl’ Sp+q72) N (Dfrq, Serqfl)

such that Im(i;) N Im(iy) = {z¢} the basepoint o € SP*7~1 C D%, See Figure .

Figure 5.1: Two embedded disks

Define the map P : (D59, SPHa=t) — (DP+ay Dpray Dpa Spta—ly Gpra=ly grta—1)
by factoring out the union of the embedded disks Im(¢;) U Im(is).

Let ¢, be the characteristic map of the cell attached by the fixed representative of
the class A;, for t = 1,2,3. Now define the map f, : (D% SPT4=1) — X’ by the
composition (¢; V ¢ V ¢3, A1 V Ao V A3) o P.

Take the lower hemisphere (D™ SP*4=1). Recall that the sum A, + Ay + A3 is
trivial in 7y ,—1(X), hence is nullhomotopic in X. Choose such a null-homotopy H :
SPrta=l o T — X that Hy = A\ + Ay + X3 (for the same representatives of the classes \;
as were used above) and H; = *. Hence H factors through SPT4~1 x [/SPta—1 x {1} =~
C Spta—1 >~ pptq.

gpta—l o [ a s X s X!

\ V (5.48)

Dpr+a

Define f_ : (D?*? SPta=1) — X’ to be H' in such a way that f_ restricts to Hy on
the subspace SPT¢~!. This way f; and f_ agree on SP*9~! and hence we can combine
them to define f: SPT7 — X',
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To show the degree requirement, taking t = 1 for simplicity, observe that the compo-
sition f’: SP* — X' — X'/ X, U X3 is homotopic to the map ¢ : ST — X'/ X, U X3
induced by the characteristic map ¢, : D™ — X’ of the cell attached by the map A;.

The argument works analogously for ¢t = 2, 3. O
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